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ABSTRACT 

A systematical study of Michell’s integral was carried out and an investigation into a discrepancy between the linear theory and 
experiment was conducted.  Special attention was given to the influence of viscosity on the interaction of the bow and stern 
systems of ship waves.  

An experiment with two struts provided information about the mechanism of influence of viscosity of a fluid on the ship wave 
resistance.  This experiment argued against a popular opinion that the humps and hollows are absent in an experimental curve 
because of the action of the boundary layer, the wake, and the hull sheltering effect.  Our calculations confirm the hypothesis that a 
certain part of the bow wave’s energy is wasted on turbulence of a flow around the moving ship and does not participate in the 
interaction with the stern system of waves.  

The new form of Michell’s integral in which the monotone part is separated from the oscillatory part made it possible to 
determine the previously unknown peculiarities of this integral.  For the first time analytical and experimental methods suggested 
the reason why the wave resistance at low and high speeds should be investigated separately. 

The new comparative criterion of choosing a ship hull form with the least wave resistance was obtained from the modified form 
of Michell’s integral and then verified for models described by different equations.  This method provided optimum forms that 
were well coordinated with the known forms.  

The study of the influence of the ship hull surface curvature on wave resistance produced a graph combining all possible ship 
hull forms.  It was shown that the “simplified” hull shapes with cylindrical fore bodies have the largest possible value of wave 
resistance and why the design of fore bulbs is an extremely tricky matter. 

1.  INTRODUCTION 

It has been more than one hundred years since Michell’s 
famous article about the wave resistance of thin ships was first 
published in 1898. 

Michell’s theory dealt with the problem of ship wave 
resistance and had been worked out by linearizing the 
boundary conditions on both the ship’s hull and the free 
surface of the fluid.  Many works have been devoted to the 
study of Michell’s integral. (For example Birkhoff et al. 
[1954], Birkhoff & Kotik [1954], Cuthberg [1964] Emerson 
[1954; 1971], Guilloton [1946; 1951; 1952; 1962; 1965], 
Doctors [1998], Havelock [1909; 1926; 1932; 1934a; 1934b; 
1935; 1948; 1951], Hsiung & Wehausen [1969], Inui [1957; 
1962; 1981], Keller & Ahlawalia [1976], Lunde [1951], 
Michelsen [1966; 1967; 1972], Newman [1964; 1976], 

Pavlenko [1937], de Sendagorta & Grases [1988], Sharma 
[1969], Shearer [1951], Sretenskii [1937; 1941; 1977], Tuck 
[1976; 1989], Wehausen [1957; 1963; 1973], Weinblum [1930; 
1932; 1950; 1952], Wigley [1926; 1931; 1936; 1937 – 8; 1942; 
1944; 1948; 1962; 1963; 1967], and others). 

More than one hundred years have passed, but in spite of all 
the efforts that have been made by mathematicians and 
hydrodynamicists over the world, we still have nothing better 
for practical implementation than the Michell theory.  That is 
why we are forced to repeatedly return to the Michell integral.  
It would be convenient if the Michell calculated curve of ship 
wave resistance coincided with the experimental one.  
However, we still don’t know the cause of the humps and 
hollows present in the Michell curve that are absent in the 
experimental one for small Froude numbers.  Nevertheless, the 
Michell integral can be used in the design of ship hulls. This 
has become the topic of a large body of research. 
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Michell himself carried out the first test of the theory. As his 
brother wrote, Michell had assembled a set of data, containing 
known experimental measurements of the total resistance of 
water to the movement of real ships.  Unfortunately, he didn’t 
give examples of these data in his paper. 

Wigley had carried out fundamental arithmetical and 
empirical verifications of Michell’s integral at the end of the 
1920s.  For this purpose Wigley had developed a large series 
of different analytical models with constant draft, a 
length/beam ratio L/B = 10.67 and beam/draught ratio 
B/T = 1.5.  The dependence upon x and z was represented as a 
product of a function of x with a function of z thereby 
simplifying the calculation of Michell's integral.  At the same 
time Weinblum, having developed a series of analytical 
models, carried out similar research.  Having discovered a 
good qualitative result of Michell’s integral the investigators 
turned to a systematical study of the linear theory of ship wave 
resistance and Michell’s integral in particular.  

The ultimate goal of our investigation was to reveal the 
cause of the discrepancy between Michell’s theory and the 
experimental data at low Froude numbers.  In addition, there 
was a need for a theoretical method to design the ship hull with 
the least wave resistance. 

This paper contains six parts.  
1. The first part includes a brief survey of some well known 

and new results related to the linear theory and Michell 
integral. 

2. The second part describes a new form of Michell’s 
integral in which the main monotone part is separated 
from the oscillatory one, which is directly connected with 
the interference of bow and stern wave systems of the 
ship. 

3. The third part presents the results of the calculation of 
Michell’s integral, assessment of these results, and the 
immediate deductions.  

4. In the fourth part a new hypothesis of the turbulent action 
of ship waves is presented.  The hypothesis did arise from 
the fact that ship waves create the turbulence of flow 
around the moving ship, a certain amount of the bow wave 
energy being wasted for this. 

5. In the fifth part a practical way to shape the ship hull 
forms with the least wave resistance, using new criterion 
obtained on the basis of accounts from part 2, is described. 
It is illustrated by clear examples (Appendixes B and C). 

6. The sixth part contains an investigation of the influence 
the hull surface curvature exerts on the wave resistance.  It 
is based upon the use of a mathematical model of the hull 
with a developable surface and on the analysis of the 
integrand of Michell’s integral. 

Figures 1A – 21A in Appendix A show the results of both 
the calculations and the experimental curves of residual 
resistance for 21 models of Wigley and Weinblum.  There is a 
measured curve, Michell’s curve, the main part of Michell’s 
integral, and the curve of wave resistance taking into account 
the viscous effect. 

Finally, the explanation of the discrepancy between the 
prediction of wave resistance based on linear theory and 
experimental data has been obtained.  

A. Musker [1989] showed that the calculated points for the 
wave resistance that had been obtained by different authors for 
the same model of a Series 60 hull using linear theories 
differed significantly.  The calculated points form a cloud 
about an experimental curve as shown in figure 2.  

Musker thought that the cause of this lay in the linearization 
of boundary conditions, but it will be shown later in this paper 
that there is another cause. 

2.  BRIEF SURVEY OF THE KNOWN AND OBTAINED 
RESULTS CONNECTED WITH THE LINEAR THEORY 
AND THE MICHELL INTEGRAL 

The necessity of considering the discrepancy between the 
predictions and experimental data led us to the conclusion that 
there is a need to examine all the assumptions of the Michell 
theory.  With this aim, a careful analysis has been conducted. 

(a)  Effect of linearizing the boundary conditions on both the 
ship hull and a free surface of a fluid  

It would appear reasonable to assume that presence of the 
sharp humps and hollows in Michell’s curve is due to 
linearizing the boundary conditions.  In this connection it is 
interesting to see the results of the calculations of the ship 
wave resistance when both linear and nonlinear theories are 
used.  

As is evident from the graph in figure 1, all the curves have 
the same humps and hollows as the Michell curve. Such 
features of the wave resistance, derived by nonlinear theory, 
were revealed when new sufficiently powerful computers were 
developed.  
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Figure 1.  Comparison calculations of wave resistance of the 
parabolic Wigley model (by H. Maruo & K. Suzuki [1977], 
figure 3). 
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The important problem of the wave-making resistance of a 
surface-piercing body seems to require a more realistic 
representation of the free surface than is provided by the 
classical linearized theory. There is an essentially analytic 
approach to the nonlinear flow past a finite ship hull – the 
second order perturbation about a thin ship representation.  
Formulations of this type have been invented or developed by 
Sizov [1961], Wehausen [1969], Brard [1972], Maruo [1966], 
Yim [1968], Eggers & Choi [1975], Guilloton & Noblesse 
[1975], Dagan [1975] and others.  Comparison between wave 
resistances computed by these methods and experimental data 
published by Gadd [1973] and by Hong [1977].  Chapman 
[1977] provides a brief review of the papers devoted to the 
analytical methods solving non-linear ship wave resistance 
problems. 

 

 

Figure 2.  A collection of computer predictions of wave 
resistance for the Series 60 hull using linearized theory taken 
from the two workshops differ only in their method of solution 
(A.Musker [1989], figure 1). 

Non-dispersive waves exist around a ship’s bow.  These 
nonlinear, non-dispersive waves in the field near the ship bow 
are mostly attributed to the ship’s resistance and are named 
Free Shock waves. The papers of Baba & Takekuma [1969], 
Miyata et al. [1980; 1981] deal with this problem.  

In order to examine the role of linearization of the boundary 
conditions on the free surface, the wave resistance with exact 
boundary conditions was calculated.  The goal of this research 
was to examine the effect of neglecting squares of the 
perturbation velocities in the boundary conditions. The field of 
perturbation velocities obtained by the Hess-Smith method was 
introduced into the calculation of ship wave resistance.  These 
calculations showed that neglecting the squares of the 
perturbation velocities in the free-surface condition doesn’t 
lead to any significant errors. 

(b)  The contribution of the line integral to ship wave 
resistance 

The following investigation is devoted to a study of the role 
of the line integral taken along the main waterline in 
computing the value of the wave-resistance of a ship.  There 
was reason to hope that including the line integral would make 
it possible for one to take partly into account the non-linearity 

of the free surface conditions.  However, the results for such 
studies vary from one investigator to another.  

Peters and Stoker [1957] were the first to call attention to 
the existence of a line integral in obtaining the Green function.  
Next, Wehausen [1963] obtained a line integral in the formula 
for ship wave resistance.  Then Maruo [1966], Eggers [1966], 
Kotik & Morgan [1969], Brard [1972], Kusaka. [1976], Bessho 
[1976; 1994], Kutazawa & Takagi [1976] addressed the 
contribution of the line integral to the wave resistance of a 
ship.  

Newman [1976] wrote in the discussion that the second-
order potential was generally expressed as a surface integral 
plus a line integral, and much debate has occurred regarding 
the line integral.  

Bessho [1976] summed up the foregoing results on the line 
integral of the velocity potential of a surface piercing body as 
follows: 

a) its source-term is canceled out by the one resulting from 
the change of the wetted surface of the ship; 

b) the sum of its doublet equals the virtual volume change of 
the displacement; 

c) it is not important at high speed, but at low speed the 
contribution of the line integral is essential. 

In addition, analyzing the work of Baba & Takekuma 
[1975], Bessho came to the conclusion that the uniqueness of 
representation of the ship hull by hydrodynamic singularities is 
linked with the line integral.  

There is an interesting physical interpretation in Maruo’s 
[1966] work of the line-integral term as a necessity to fulfill 
the continuity condition.  He wrote that one can assume that 
the line-integral term is a consequence of the linearization of 
the problem, and one can also note that this additional 
distribution of singularities does not cause any appreciable 
change in the position of the humps and hollows in the wave 
resistance curve. 

Kotik & Morgan [1969] wrote that there is uniqueness for 
submerged bodies, but not for the case of surface-piercing 
bodies.  They defined an exact singularity distribution potential 
at zero Froude number for uniform flow incident on a double 
body.  The authors proved that for submerged bodies although 
such singularity distributions on the body were highly non-
unique, the associated wave resistance is unique.  This is not so 
for surface-piercing bodies, and an attempt was made to restore 
uniqueness by introducing integrals over the waterplane. 

Brard [1967] wrote that there are two problems requiring the 
inclusion of the line integral.  First, it is necessary when the 
question of the representation of the ship hull by hydrodynamic 
singularities arises.  Secondly, it is necessary to take it into 
account when the body pierces the free surface of a liquid. 

Kusaka [1976] has found out in the process of numerical 
integration that for bodies piercing a free surface the total 
density of all hydrodynamic singularities representing the hull 
is equal to zero only with only the line integral taken into 
account writing that 
1. the line integral gives a serious contribution to the density 

of sources of the main hull just between the free surface; 
2. it brings better prediction of the wave-making resistance; 
3. the line integral should be taken into account for 



Oceanic Engineering International 77

mathematical consistency of the boundary value problem. 
Kutazawa & Takagi [1976] have found that the line integral 

seems to characterize a surface piercing vessel.  This appears at 
the beginning of the formulations of the second-order potential, 
corresponding to the change of the wetted surface or the 
integration on the free surface, but the final formula includes 
no line integral.  This fact seems to imply that even if the 
wetted surface changes chiefly in the high-Froude-number 
range, the classical first-order potential can be a good 
approximation for a surface piercing vessel. We do not need to 
consider the effect of the change of the wetted surface in the 
second-order potential. 

The deduction given below is from the work of Wehausen & 
Brard. 

The velocity potential with a line integral has the form 
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L is the main waterline,  
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υ is the ship velocity, and  
G is the Green function.  

From here wave resistance becomes 
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Brard [1972] has obtained the densities of sources σ(x, y, z) 
from the integral equation, but in our set the first 
approximation of density σ(x,y,z) is taken in the form given by 
Michell, i.e. σ(x,y,z) = 2υ cos(n,x). The first approximation of 
the source density in the line integral in using the linear theory 
has the following form. 
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the expressions for P(θ) и Q(θ) have the form 

 

3

2

3

2

1( ) cos( ) ,
1

1( ) sin( ) .
1

x

o xL

x

o xL

fP kx dx
k f

fQ kx dx
k f

θ

θ

=
+

=
+

∫

∫
 (6) 

Finally, the calculated formula for the ship wave resistance 
with line integral turns out as (1) where  
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The results of our calculation are shown in figure 3. 
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Figure 3.  Comparison of the wave resistance coefficients with 
and without the line integral  (Wigley parabolic model). 
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Such calculations showed that the contribution of this 
integral is negligibly small at low Froude numbers, but it is not 
so at the high Froude numbers. This result is in conflict with 
the Bessho [1976] conclusion.  

(c) Experimental verification of Michell’s integral 

The situation with experimental data is no better than with 
calculations.  In figure 4 one can see the wide scatter of the 
experimental data for the same parabolic Wigley model from 
different towing tanks.  This scatter is so wide that almost the 
whole Michell curve with its humps and hollows lies inside of 
the region of experimental points.  These data were taken from 
a paper by Bai [1979]. 

Chen & Noblesse [1983] made a comparison of the results 
of nine different computations with the results of eleven 
experiments carried out in various testing basins.  Chen & 
Noblesse [1983] showed that the divergence of computations 
from experimental data varied with different authors in the 
interval 0.266 < Fn < 0.482 from 5% to 28% with the worst 
divergence from 12% to 32%. 

The discrepancy between the predicted and experimental 
value of the ship wave resistance may be due to the beam to 
length ratio that does not fulfill the Michell’s condition.  
Consequently, it is interesting to consider the results of the 
experiments with plates in which the beam to length ratio is 
very small. 

To determine the length a vessel should be to be considered 
a “thin ship” Weinblum et al. [1952] tested a model in the 
David Taylor model basin, which they have called “a rough 
plate”.  The body had a length to beam ratio L/B = 37.67.  

In 1969 in the Hamburg tank S. Sharma carried out tests of a 
parabolic model with length L = 2m, draught T = 0.3m, and 
breadth B = 0.1m. 

In these two last cases the experiments were carried out for 
Froude numbers greater than 0.20.  

In those times, when the authors carried out these tests, the 
calculation of Michell's integral represented significant 
difficulties because of the limited capacity of computers.  
Therefore we have prepared new exact calculations.  The 
results of comparisons with experimental curves are given in 
figures 5 and 6. 

It is evident from figures 5 and 6 that for the thin ship model 
under consideration there is fair agreement between the 
theoretical wave resistance calculated from Michell’s theory 
and the empirical values if Fn > 0.23.  Consequently, the 
Michell theory works well at high Froude numbers without 
taking into account the viscosity of a fluid. 

However, neither of these experiments covers speeds, for 
which the Michell curve has humps and hollows, that are 
absent on experimental curves. Wigley and other researchers 
explained this phenomenon by the fact that the theories are 
carried out without taking account of viscosity of a liquid. For 
the last decades many papers have been written, in which the 
wave resistance of a vessel is determined taking into account 
viscosity (for example, Hino [1989], Shahshahan & Landweber 
[1990] and others).  
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Figure 4.  A comparison between the coefficient of wave 
resistance curve and experimental data of the parabolic Wigley 
model (Bai [1979b] Fig.1). 
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Figure 5.  Comparison of a calculated Michell curve with 
the experimental curve, obtained by Weinblum et al. [1952]. 
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Figure 6.  Comparison of Michell’s calculated curve with 

experimental curve obtained by Sharma [1969]. 
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(d) Experimental investigation of the mechanism of effects of 
viscosity on the ship waves 

The next investigation was undertaken to find the effect of 
the fluid viscosity on the ship wave resistance.  
The humps and hollows in the wave resistance curve are a 
consequence of the interaction of the bow and stern wave 
systems.  That is why this investigation is based upon a new 
form of Michell’s integral in which a main monotone part of 
wave resistance has been separated from an oscillatory 
interaction part, as outlined in Section 3 of this paper. This 
investigation incorporated the results of the experiment which 
had shown that the boundary layer, the wake, and the hull 
sheltering effect of a moving ship do not influence ship wave 
interaction.  In this work we also built on the results obtained 
by Japanese researchers upon studying the waves around a 
moving vessel (Baba [1969; 1975; 1976], Inui [1981], Miyata 
[1980; 1981]). 

It was known that Wigley [1938] and Havelock [1909; 
1948] and others believed that the primary source of the humps 
and hollows in a calculated resistance curve is connected with 
the assumption of a perfect fluid.  They thought that the 
boundary layer and the wake affected the interference of the 
bow and stern wave systems and smooth out the humps and 
hollows.  For example, Havelock [1926] wrote  

“The direct effect of viscosity upon waves already 
formed may be assumed to be relatively small; the 
important influence is one which makes the rear portion 
of the model less effective in generating waves than the 
front portion.  We may imagine this as due to the skin 
friction decreasing the general relative velocity of the 
model and surrounding water as we pass from the fore 
end to the aft end; or we may picture the so-called 
friction belt surrounding the model, and may consider 
the general effect as equivalent to a smoothing out of 
the curve of the rear portion of model”.  

And in the paper [Havelock 1935] he wrote:  

“It seems fairly certain that one of the main causes of 
the difference between theoretical and experimental 
results is the neglect of fluid friction in the calculation 
of ship waves, and further that the influence of fluid 
friction may be regarded chiefly as one which makes 
the rear portion of the ship less effective in generating 
waves than the front portion”. 

In order to verify this assumption we carried out a simple 
experiment with two struts with an aircraft profile (l = 39mm, 
b = 24 mm, [Gotman 1989]).  These struts were situated in the 
positions of the fore and aft perpendiculars (between them 
L = 0.915m).  During this experiment the Froude number 
Fr = glн  of struts was very high and it is connection each 
strut produced the only Kelvin wave system.  Hence there was 
the required simulation of two ship wave systems from tandem 
struts.  Between these wave systems there is obviously no ship 
hull.  Therefore, the influence of a ship hull with its boundary 

layer and wake was eliminated.  It can be expected that the 
experimental curve of these tandem struts will have the same 
humps and hollows as the calculated one.  The results of this 
experiment are shown in figure 7.  
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Figure 7.  Results of the experiment with two struts. 

But the result did not turn out as expected.  The 
experimental curve was monotonic, like the ship’s ordinary 
wave resistance curve.  There are three curves in figure 7.  The 
lower curve shows wave resistance of a single strut, the upper 
one shows doubled wave resistance of the single strut, and the 
middle curve is the wave resistance of the two tandem struts. 

This experiment also showed that the interference of the 
bow and stern wave systems begins at about Fn = 0.23.  Before 
the velocity reaches this Froude number there is a region of 
calm water between the two wave systems.  When the speed of 
the movement is increased the length of the cross waves also 
increases and results in the stern system of waves entering 
sequentially from the fourth to the first wave of the bow 
system.  When the aft strut enters the second wave of the bow 
system, the interference starts progressing rapidly.  When the 
second strut enters the first wave of the bow system, the waves 
have merged to become one dipole like wave system.  

This experiment lets us conclude that the cause of the humps 
and hollows isn’t related to the boundary layer and the wake of 
the ship.  

It was quite natural to carry out the numerical check of the 
experimental results with struts.  Would it be that in the 
calculated curve of the wave resistance of the struts there 
wouldn’t be any humps and hollows?  For simplicity the 
equation y = b f(x) is submitted for surface of struts, where b is 
the half-beam of the model hull. 

The coordinates x, ξ are accepted as the first strut, the 
coordinates x+L and ξ+L as the second strut, L is the distance 
between the struts, and l is the length of the strut.  The Michell 
integral is written as 
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where 
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As the struts are identical in length and form it is possible to 
write  
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It is easy to see from expression (9), that there is a factor 
(cos kL+1).  This factor should be reflected in the form of 
humps and hollows in the calculated curve, like the ordinary 
calculated wave resistance curve.  From this expression it 
becomes evident that the smaller the Froude number the more 
humps and hollows expected in the calculated curve.  We have 
to accept this proof because there is no way to calculate the 
wave resistance of struts for the large Froude numbers 
Fr = glн , where the Michell curve decreases.  

Our active search for the cause of humps and hollows in the 
calculated wave resistance curves within the framework of the 
theory of a perfect liquid has not resulted in success. Wehausen 
[2001], when discussing the results of the experiment with 
struts, persistently repeated that viscosity does influence the 
wave resistance of struts.  It has pushed us to look for a 
different approach to solving this problem, viscosity of a liquid 
being taken into account. 

The viscosity of a liquid, undoubtedly, exerts its influence 
on the ship wave systems.  It was confirmed with experiments 
by Baba [1969] and Miyata et al. [1980; 1981] which have 
shown that the first two waves of a bow system are of shock 
character and this is proven by the loss of total head in contrast 
to Kelvin waves.  It is also clear that the boundary layer and 

wake change a field of speeds and pressure at the stern wave-
making point, resulting in a reduction of amplitudes of the aft 
wave system. 

But how does all this influence the interaction of the bow 
and aft ship wave systems?  For the viscosity of a liquid to 
influence the interaction of waves it is necessary for the wave 
amplitudes of the bow system to essentially decrease as they 
pass along the ship hull.  Our calculations have shown that the 
kinematics coefficient of viscosity is too small and is 
practically unable to significantly affect the amplitudes of 
moving waves.  

In the experiment with struts the boundary layer, wake, and 
the sheltering effect of the ship’s hull are not present.  The only 
assumption is that the wave flow around the ship becomes very 
turbulent because of viscosity.  The hypothesis was made that 
the ship waves create the turbulence of flow around the 
moving ship, and that a certain part of the bow wave energy is 
wasted.  

The turbulent effect of waves is well known and was 
described by Shuleikin [1958]. Dobroklonskii [1947] and 
Shutilov [1941] have studied this phenomenon of ocean waves 
and have estimated the turbulence coefficient.  Apparently, 
similar experimental and theoretical work should be done for 
ship waves. 

When it became apparent that the turbulence of a ship’s 
waves is associated with the process of wave damping and 
energy dissipation we discovered a great many existing 
theoretical and experimental results which support this 
hypothesis.  For verification one can explore numerous papers 
on this problem. 

The complex structure of free surface shock waves (FSSW) 
was studied by Miyata [1980], Mori [1979], Shin & Mori 
[1989] and others.  The following investigation was focused on 
a study of turbulence near the free surface in different forms by 
many authors including Madsen & Svendsen [1983], K. 
Hanjalic & Launder [1972], Launder et al. [1975], Hung & 
Buning [1985], Hunt & Graham [1978], Nakano [1988], 
Schofield [1985], Tryggvason [1988], Visbal & Knight [1984], 
Zhao & Zou [2001], and many others. 

The structure of the bow waves has received considerable 
attention in a review of Miyata and Inui [1984].  They 
observed that the near-surface flow structure and wave pattern 
depended strongly on the Froude number and the bow 
configuration.  They also demonstrated that the near-surface 
flow had transformed into a turbulent flow downstream of the 
wave crest.  Their velocity measurement showed that this 
transition involved a significant loss of energy.  They wrote: 

 
“The wave system is not like that of Kelvin’s waves in 
the near field of the ship model.  Two remarkable waves 
are originated from the forepart of the model, and their 
crest lines are nearly parabolic or straight.  The 
appearance of the water surface is quite different in 
front and behind the water crest line.  Behind the wave 
crest the water surface seems to be turbulent…  The 
bow waves evidently show intense nonlinearity in a 
wide range of advance speeds.  Their appearance is very 
similar to a turbulent bore or a hydraulic jump”. 
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The turbulent character of the flow near the bow of ship was 
shown in figures 2 and 3 by Inui [1981]. 

Our hypothesis about a turbulent character of the bow ship 
waves is confirmed also by the experiments of Dong et al. 
[1997].  They wrote  

“ …evident is the tendency of the flow downstream of 
the bow wave crest to turn towards the body and then 
turn outwards again as it reaches the next wave crest. 
The latter outward trend has also been demonstrated by 
Miyata & Inui [1984], as part of their attempt to make 
an analogy between a bow wave and an oblique shock. 
… in most cases the near-surface becomes turbulent 
while crossing the wave, in agreements with Miyata & 
Inui [1984] for ship waves as well as Peregrine & 
Svendsen [1978] for two-dimensional waves”. 

Turbulence of the ship’s bow waves has received 
considerable attention.  This problem became the purpose of 
study by Allesandrini & Delhommeau [1994; 1995; 1996; 
1999], Brocchini & Peregrine [2001], Dana Dabiri [2000], 
Dummermuth et al. [2000], and many others.  There was a 
Workshop devoted to this problem in March, 2000 in 
California.  Some interesting studies have been conducted at 
Southern Queensland University by Mei & Roberts [1995; 
1998] and others.  

Some investigations of shock and breaking waves refer 
directly to the problem of turbulence.  Miyata and Inui [1984] 
wrote:  

“A free surface shock wave is supposed to have four 
developmental stages, namely,  
(i) formation of very steep nonlinear waves,  
(ii) breaking or damping of the wave crest and 

occurrence of energy deficit,  
(iii) diffusion of energy deficit with turbulence and 

sometimes air entrainment on the free surface, 
and  

(iv) formation of a momentum-deficient wake far 
behind.” 

Further  

“A part of the wave energy of the nonlinear steep wave 
is dissipated at the wave front and transformed into 
momentum loss far behind the ship; on the other hand 
another part of the wave energy is likely to be supplied 
to the dispersive linear wave system that propagates to 
the far field.  The nonlinear steepness of the nonlinear 
wave is partly compensated by dispersive spread and is 
partly eased by dissipation.  Therefore, the waves of 
ships possess both dispersive and dissipative 
properties.  The dissipation becomes dominant when 
the free surface is turbulent and breaking or damping 
of the wave crest is remarkably strong.”  

And again:  

“It is supposed that a kind of viscous effect plays a 
certain role in the process of wave damping and energy 

dissipation.  The turbulence on the free surface is 
concerned with this dissipative behavior. …A kind of 
viscosity involving turbulence also diffuses the energy 
deficit produced at the wave front in the rear region.” 

There is no way to list all the necessary work but one can 
find many more references in review articles by Peregrine & 
Svendson [1978] and Banner & Peregrine [1993]. 

(e)  The accuracy of numerical integration of Michell’s integral  

Yet another important calculation has been carried out.  In 
order to check the calculations for accuracy, Michell’s integral 
was calculated by two methods for an analytical model.  In the 
first case the double integrals were integrated exactly 
analytically in terms of known functions and in the second case 
they were calculated numerically.  The results emerging from 
this analysis showed that for the accuracy of the numerical 
integration to coincide with the exact value, it was necessary to 
divide the length between perpendiculars into 1000 parts and 
the draft into 200 parts.    

In figure 8 we can see what we would have if these numbers 
were 250 and 10 respectively.  It should be pointed out that in 
our calculation the ordinates of a ship hull were calculated 
exactly and were not taken from a lines drawing.  In the latter 
case the errors are bound to be much larger.  It is very difficult 
to get the necessary accuracy because the Michell integral is a 
Stieltjes integral and hence the integrand and the surface of 
integration must be smooth without any broken lines.  Any 
jumps in the derivatives of the surface hull equation initiates a 
fictional Kelvin wave system, which is absent in reality.  As a 
consequence we obtain more wave resistance from more 
subdivisions.  If the number of frames and waterlines is very 
great, the jumps in the derivatives smooth out, and the account 
becomes exact. 
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Figure 8.  Comparison of results of numerical integration with 
different numbers of frames and waterlines (N is the number of 
frames, L is the number of waterlines). 
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Hence, the use of numerical integration in wave resistance 
problems requests one to be careful.  If there is a corner in the 
hull surface, the resulting wave is not fictional, of course. 

3.  A NEW EXPONENTIAL FORM OF MICHELL’S 
INTEGRAL 

The humps and hollows of the calculated wave-resistance 
curve hamper the use of the Michell theory for analysis and 
optimization of the displacement ship hull.  Seemingly, 
Michell’s integral doesn’t give such interference of wave 
systems as experiments, and that is why, in order to make this 
problem clear, it appeared necessary to separate its oscillatory 
and nonoscillatory parts.  The traditional form of Michell’s 
integral gives no way of determining such a separation, and for 
this purpose a new form has been obtained. 

Michell obtained the wave-resistance integral in the form 
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After expanding the cosine of the difference and doing the 
regrouping, Michell found the integral in the following form 
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where 
ρ is the mass density of the liquid,  
g is the acceleration of the force of gravity,  
υ  is the velocity of the ship,  
L is the hull length, 
z(x) is the equation of the zero buttock,    
y = f(x,z) is the equation of the hull surface,  
B is the beam,  
T is the draft, and  
θ is the angle between the direction of the moving ship and that 
of a propagating wave, and  
p and k equals     

 .
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,
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The new form of the integral is obtained when in the 

expression (10) we replace cos[k(x - ξ)] by the real part of exp 
ik(x - ξ): 
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It is convenient to write this integral in relative coordinates 
where we have replaced x by 2x/L, z by z/T, y = f(x,z) by  
y = b•f(x,z) where  b = B/2.  Then 
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For computation and analysis these expression may be 
conveniently written as  
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where 
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The separation of the oscillatory part from the main 
(nonoscillatory) part in the wave-resistance integral (16) may 
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be easily demonstrated for a symmetrical Wigley model with 
constant draft along the whole length of the ship hull.  The 
equation of the surface of the hull may then be written as a 
product of functions of z and x 

 y = b f2 (x) f1 (z) (20) 

In this case the integrals (19) depends only upon p and is 
equal to  
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0
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and the integrals (18) are simplified and may be written as 
products: 
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These integrals are then integrated by parts, which gives the 
final expression as either a series or perhaps polynomials.  To 
simplify the notation we have introduced  
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The series may be written as 
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If f2(x) is polynomial of degree m, its derivative of order 
more m equals zero and in (24) there remain only m terms in 
the summations.  The product of the series (or polynomials) 
(24) gives terms containing the products  
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in which the exponential functions do not occur, and which 
gives the main (nonoscillatory) part of Michell’s integral.  The 
expressions containing the exponential functions and that 
ultimately yield the oscillatory part of Michell’s integral are 
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By  regrouping  the  products  in  (26)  of  the  resulting 
series  according to the expressions [(exp 2ik + exp (-2ik)]/2 
and [(exp2ik - exp(-2ik)]/2 we then have 
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which leads to a representation of the wave resistance in the 
form 
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Here, the indexes “bo” and “b1” relate to the bow and “so” 
and “s1” relate to the stern of the hull. Then 
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To obtain the expressions Gbo, Gso, Gb1, and Gs1 the 
following transformations are made with the sums in (25), 
which can be written in the form 
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For the sums at the stern perpendicular  
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similar expressions are obtained. 
In order to compress the writing it is convenient to introduce 

the following notations 
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where 
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The last member of the series Gbo  and Gso  depend on 
whether the degree m of the polynomial  f2(x) is even m = 2r or 
odd  m = 2r+1.  

Now the series can be easily presented in the form 
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Then the product of the integrals in equation (24) is obtained 
in the form  
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This product gives the formulas (27), (28), and (29), which 
are the new form of Michell’s integral.  

In the obtained expression the oscillatory part is separated 
from the nonoscillatory part, and furthermore, the bow 
contribution is separated from that of the stern.  The interaction 
of the bow and stern systems is determined by the sum of the 
second and third members of formula (36).  

Such representation of the integral is convenient for the 
investigation of the linear theory of wave resistance and of 
interaction of the bow and stern wave systems. 

If the ship’s drought is a variable quantity, the formula of 
wave resistance has the form 
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2

2
QQTBgRw +⋅⋅=

υπ
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 (37) 

where the derivative can be written as 

 g(x,z) = fx(x,z) (38) 

and then the integral (19) has another form 
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where z = z(x) is the equation of the zero buttock. 
Formulas (18) and (19), then, have another more 

complicated form because the derivatives of g(x,z) are 
depending on x through x and through z(x).  Instead of equation 
(22) now 
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The main part has the form  

 
θ

θ
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and the trigonometric part is 
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where F1(k,p), F2(k,p), and  F3(k,p) have the form of equation 
(29), but  Gbo, Gso, Gb1, and Gs1  have been written in the form 
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4.  ANALYSIS OF CALCULATION RESULTS  

The form obtained for Michell’s integral is convenient for 
carrying through an analysis of the dependence of wave 
resistance upon the form of the hull according to its principal 
non-oscillatory part, since in this case there is excluded a non-
adequate account of the interference of the bow and stern 
systems of ship waves. 

For better visualisation of the manner in which the non-
oscillatory part of Michell’s integral correlates with the 
experimental data, calculations were carried out for 21 models 
investigated in towing tanks by Wigley [1926; 1927; 1930; 
1931; 1942; 1944] and Weinblum [1930; 1932; 1950; 1952]. 
The results of these calculations are shown in Appendix A. 

Comparative calculations of the wave resistance were 
completed for analytically given hulls of Wigley models 
[1942; 1944]. Their equations have the form 

2 2 4 2
2 4(1 )(1 )(1 ) ,b a aη ξ ξ ξ ς= − + + − where b is the 

half-beam of the model hull. 
A mean curve of the wave resistance of the parabolic model 

was obtained as a result of analyzing these experiments.  Baar 
& Price [1988] reworked the results of measurements of wave 
resistance by means of pressures and with the aid of wave 
analysis.  They obtained a curve that we have used for 
comparison with computations.  Data for the Wigley models, 
for which calculations and analysis have been provided, are 
listed in table 1. 

Model N43 differs from the others by a greater fullness, 
which is evident in figure 8A (Appendix A).  Except for model 
2038C, V-shaped sections and sufficiently great draught 
characterize the rest of the Wigley models. 

Almost all Wigley models are geometrically similar.  Hence, 
calculations were also carried out for Weinblum models 
[1932], which embrace a greater diversity of hull forms.  The 
data for Weinblum models are given in table 2. 

All the models listed in table 2 have length L = 4.5 m, beam 
B = 0.45 m and draught T = 0.18 m.  Only model 1093 has 

length L = 4.5 m, beam B = 0.30 m and draught T = 0.12 m. 
As it easy to see from the expressions above in section 3, in 

the calculation derivatives of the equation of the hull surface 
taken at the bow and stern perpendiculars occur.  These 
derivatives reveal the fundamental geometric and numerical 
characteristics of the hulls and through them we can determine 
the dependence of the wave resistance, as obtained from 
Michell’s formula, upon the ship’s hull. 

The values of the calculated derivatives for all these models 
are given in tables 3 and 4. 

The analysis of the results of these calculations allows one 
to draw the following important conclusions: 

1) An evident first result that is obtained from the new 
form of Michell’s integral is related to the peculiarities 
of wave formation around the moving ship.  Michell’s 
integral is adequate to represent the influence of a hull 
form on the wave resistance of ships.  It is well known 
that two systems of ship waves are generated from two 
wave-making points near bow and stern, as though from 
a source and sink.  Of course, the whole ship hull takes 
part in the wave making, but its effect reveals itself in 
these points.  It is easy to see from equations (30), (31) 
and (34) that the influence of the ship hull on its wave-
making is centered on the fore and aft perpendiculars 
where the derivatives of the equation of the main 
waterline are determined.  This important property of 
Michell’s integral is impossible to extract from its 
traditional form [Michell 1898]. 

2) If the waterlines near the ends of the hull are convex, 
Michell’s curve passes above the experimental one.  If 
they are concave, Michell’s curve is located under the 
experimental curve.  If waterlines are straight, only 
slightly convex or only slightly concave in these 
regions, Michell’s curve is near the experimental ones 
for Fn < 0.29.  From this we conclude that for good 
agreement with the experiment it is necessary to take 
into account second derivatives of the equation of a hull 
surface, which are connected directly to curvature of 
this surface. 

3) If the Froude numbers are above 0.29 - 0.33, the 
computed values of the main and oscillatory parts of 
Michell’s integral begin to increase by several orders of 
magnitude, and the Michell resistance becomes a small 
difference of large values.  This process begins when 
the stern wave-generating point enters the first wave of 
the bow system.  In this case the ship length is as long 
as, or is smaller than, the length of the ship wave and 
the ship generates waves like a dipole.  Such a wave 
pattern is observed experimentally as well.  
 It is the principal difference between the flow 
around the ship hull at the low and the high Froude 
numbers.  The Froude numbers 0.29 – 0.33 are the 
boundary of the separation for a study of wave 
resistance.  The behaviour of Michell’s curve at the low 
and at the high Froude numbers differs because the 
interaction of the bow and stern systems.  It is an 
explanation why the low speed theory is needed.  All 
this confirms that the Michell integral is adequate to 



Oceanic Engineering International 86 

represent the singularities of the flow around the ship 
hull.  The new form of Michell’s integral makes it 
easier to become aware of these properties than the 
generally accepted form.  

4) From equation (27) and the expression (13), (29) one 
can see that the lowest-order Froude number in 
Michell’s wave resistance is six.  However, an 
approximation of the main part curve by the polynomial 

allows determining its degree depending on the Froude 
number in every case.  The dependence of the main part 
on the Froude number varies through a large range from 
3 to 10 at low Froude numbers.  It is the influence of 
the hull form on the behaviour of the calculated curve. 

5) Comparison of the behaviour of the experimental 
curves and the main part of the calculated ones for 
different hulls ( as seen in figures 9 through 12) reveals 
that the relationship between these curves has been 
preserved as the Froude number varies. This latter result 
allows taking the main part of Michell’s integral as a 
basic guideline in deciding upon the ship hull form if 
the Froude number is between 0.3 and 0.33. 

6) The higher order derivatives of the equation of the hull 
have a substantial influence on the components of the 
wave resistance.  In addition, their influence increases 
with an increase in Froude number; the higher the order 
of the derivative, the more this influence begins to show 
itself with greater values of the Froude number. 

7) For the Froude numbers between 0.36 and 0.40, 
Michell’s integral agrees well with experimental values 
and does not require special treatment. 

8) If the smoothness of the surface of integration is 
disturbed in the process of integration over the surface 
of the hull, then fictitious systems of waves form, 
making a contribution to the computed value of the 
wave resistance, so that any numerical method must be 
tested on analytically exact models.   

9) The analytical models of Wigley and Weinblum were 
chosen with the goal of excluding from analysis the 

errors of numerical integration.  It is very difficult to get 
the necessary accuracy because the integrals from 
equation (17) are Stieltjes integrals and hence the 
integrand and the surface of integration must be smooth 
without broken lines.  

10) The Michell theory gave very poor results for only three 
of the 21 models.  This is easy to explain for the Wigley 
model 2038C that has a very small draught 
T/L = 0.03125, for this contradicts the requirements of 
Michell theory.  Weinblum’s model 1112 has a bulb in 
the bow region, making it difficult to apply the Michell 
theory.  It is very difficult to explain the divergence of 
computation and experiment for the Wigley model N43.  
For all it appears that a confirmation of the 
experimental results is necessary. 

11) The main part of Michell’s integral practically 
coincides with the experimental curve at low Froude 
numbers (0.15 – 0.3) for models 1110 (figure 16A) for 
Froude numbers up to 0.26 for models 1097, (figure 
13A), 1098 (figure 14A), 1113, (figure 19A), 1136 
(figure 21A), 829 (figure 1A), 1846b (figure 2A), 
1970b (figure 6A), and a parabolic model (figure 10A) 
for Froude numbers that are smaller than 0.3 and 0.33. 

12) The results of our investigations showed that comparing 
theory with the experiment in the example of a single 
model is not sufficient for judging different theories. 

The analysis given of Michell’s integral was developed 
firstly to determine whether linear theory gives the main part 
of the wave resistance, and secondly to analyze the reason for 
the non-adequate calculation in Michell’s integral of the 
interaction of the bow and stern systems of waves.  The answer 
to the first question is given by the behavior of the main non-
oscillatory part of Michell’s integral.  The tests of 21 models of 
various shapes showed that Michell’s integral gives the main 
part of the solution of the problem of the wave resistance of a 
ship, correctly reflecting the pattern of wave formation.  The 
study of the distortion of the pattern of interaction of wave 
systems is the purpose of the following research. 

Model number Length L, m Beam B, m Draught T, m a2 a4 Volumetric coeff. Cv 

Parabolic 4.8766 0.4572 0.3048 0 0 0.444 
829 4.8766 0.4572 0.3048 -0.2000 0 0.427 

1805a 4.8766 0.4572 0.3048 -0.6000 0 0.391 
1805b 4.8766 0.4572 0.3048 -1.0000 0 0.355 
1846a 4.8766 0.4572 0.3048 0.6000 0 0.498 
1846b 4.8766 0.4572 0.3048 0.2000 0 0.462 
1970b 4.8766 0.4572 0.3048 0.4375 -0.4375 0.467 
1970c 4.8766 0.4572 0.3048 0.8125 -1.3125 0.467 
2038c 4.8766 0.5334 0.1524 -0.5000  0.400 
N43 4.8766 0.4572 0.3048 η = (1-ζ2)(1-ξ2)(1+0.2ξ2) + ζ2 (1-ζ8) (1-ξ2)4 

2130a 4.8766 0.4572 0.3048 η = (1-ζ2)(1-ξ2)(1+0.4375ξ2± 0.5ξ3- 0.4375ξ4) 

Table 1.  Basic characteristics of the Wigley models. 
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Model number Equation of hull surface Wetted area S 

1093 η = (1-ξ4) (1- 0.4ξ2)⋅(1- 0.5ζ⋅ξ2)⋅ (1-ζ3) 1.585 
1097 η = (1-ξ4) (1- 0.4ξ2)⋅(1- 0.5ζ⋅ξ2) 2.385 
1098 η = [(1-ξ4) (1- 0.4ξ2)⋅-0.5(ξ3- ⋅ξ5)]⋅ (1- 0.5ζ⋅ξ2)⋅(1- ς3) 2.390 
1100 η = (1-ξ4) (1- 0.4ξ2)⋅(1- 0.5ζ⋅ξ2)⋅ (1- 0.564ζ4-0.436ζ8) 2.50 
1110 η = (1-ξ4) (1- 0.4ξ2)⋅(1- ζ⋅ξ2)⋅ (1- 0.564ζ4-0.436ζ8) 2.45 
1111 η = (1- 2.46ξ4 +1.46ξ6) (1- ζ⋅ξ2)⋅ (1- 0.564ζ4-0.436ζ8) 2.425 
1112 η = (1-ξ2) (1- ξ2ζ +3ξ6ζ) (1- 0.564ζ4-0.436ζ8) 2.421 
1113 η = (1+0.1ξ2 – 1.995ξ4 – 0.895ξ6) (1- ζ⋅ξ2)⋅ (1- 0.564ζ4-0.436ζ8) 2.491 
1114 η = (1- 0.8285(ξ2 + ξ4 - ξ6) –0.1715⋅ξ8)⋅ (1- 0.564ζ4-0.436ζ8) 2.444 
1136 η = (1-ξ4) (1- 0.4ξ2)⋅(1- ζ12)⋅ [1- 0.5(ζ+ζ3) ⋅ζ2] 2.614 

Table 2.  Basic characteristics of the Weinblum models. 

 

Model number f’(1) f’’(1) f’’’(1) fIV(1) fV(1) fVI(1) ao 

Parabolic -.20 -.20 0 0 0 0 10o38’ 
829 -0.16 0.00 0.48 0.48 0 0 8o00’ 

1805a -0.08 0.40 14.40 1.44 0 0 4o17’ 
1805b 0.00 0.08 2.40 2.40 0 0 0o00’ 
1846a -0.32 - 0.08 -1.44 -1.44 0 0 16o41’ 
1846b -0.24 -0.40 -0.48 -0.48 0 0 12o41’ 
1970b -0.20 0.15 3.15 13.65 31.65 31.65 10o38’ 
1970c -0.10 1.35 10.65 42.13 94.50 94.50 5o20’ 
2038c -0.10 0.30 1.20 1.20 0 0 5o20’ 
N43 -0.24 -0.40 -0.48 -0.48 0 0 12o41’ 

Table 3.  Derivatives of the equations of the Wigley models. 

 

Model number f’(1) f’’(1) f’’’(1) fIV(1) fV(1) fVI(1) fVII(1) fVIII(1) 

1093 -0.160 -0.107 1.600 8.000 19.20 19.20 0 0 
1097 -0.240 -.080 2.400 12.000 28.80 28.60 0 0 
1098 -0.14 0.62 5.100 18.000 34.80 28.80 0 0 
1100 -0.240 -0.080 2.400 12.000 28.80 28.80 0 0 
1110 -0.240 -0.080 2.400 12.000 28.80 28.80 0 0 
1111 -0.108 1.428 11.616 46.640 105.12 105.12 0 0 
1112 -0.200 -0.200 0 0 0 0 0 0 
1113 -.0.241 0.311 5.952 27.440 64.44 64.44 0 0 
1114 -0.137 0.365 2.191 -0.974 -55.60 -286.1 -691.5 -691.5 
1136 -0.240 -0.080 2.400 12.000 28.80 28.80 0 0 

 
Table 4.  Derivatives of the equations of the Weinblum models. 
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Figure 9.  Main values of the wave-resistance coefficients of  the Weinblum models. 
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Figure 10.  Experimental values of the wave-resistance coefficients of the Weinblum models. 
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Figure 11.  Main values of the wave-resistance coefficients of the Wigley models. 
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Figure 12.  Experimental values of the wave-resistance coefficients of the Wigley models. 
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5.  HYPOTHESIS OF TURBULENT VISCOSITY 
APPLICATION 

It has already been mentioned that we assumed from the 
beginning that viscosity plays an important role in the 
experiment with struts.  It is presupposed that in this 
experiment viscosity influences a wave field by smoothing 
humps and hollows in an experimental curve of wave 
resistance.  

Thus, we took into consideration that the bow waves are 
losing part of their energy while moving along the ship hull to 
its stern by the turbulence.  It makes us take the turbulence into 
account in wave resistance. But, a very simple method is 
required for this purpose because the exact definition of the 
ship wave’s turbulence represents an unsolvable task. 

A lot of semi-empirical methods have been offered to take 
into account the influence of viscosity on ship’s wave 
resistance. Havelock [1935] and Wigley [1937-8] were the first 
who began to enter some corrections with this aim.  Havelock 
[1935] assumed a reduction factor to the slope of the hull 
surface ∠y/∠x in the form β(x), which is unity at the bow and 
decreases towards the stern.  Wigley [1937-8] has divided the 
wave resistance of a ship into components such as 
Cw = Cwb + Cwi + Cws where Cwb is the wave resistance due 
to the bow wave system, Cws is the wave resistance due to the 
stern wave system and Cwi is the wave resistance due to the 
interaction of the bow and stern wave systems.  He entered the 
correction factors in the form Cw = Cwb + αβCwi + βCws. 

Both α and β are constants less than unity.  Then Wigley 
assumed α = β.  The correction for viscosity was obtained as 
∆Cw = -(1-β2)(Cw – Cwb). 

Wigley gave an empirical formula for the reduction factor as 
follows 

 β2 = exp(-0.001 Fn-5) (44) 

where Fn is the Froude number gLVψ .  He determined this 
factor by means of comparison with experimental data for 
models with simple mathematical lines. 

Unlike Wigley’s assumption, Emerson [1954] considered 
factor α a general correction factor in the wave system, which 
is independent of β.  Furthermore he employed another type of 
viscosity effect that is a virtual extension of the stern.  Inui 
[1957] brought out a similar idea.  He regarded factor α to 
have no relation to the viscosity effect but to represent some 
non-linear effect that appeared from the finite beam instead of 
infinitesimal one in Michell’s theory.  He named it a self-
interference coefficient and gave a semi-empirical formula 
α = exp[-0.40 (B/L)Fn-2]. 

However, the question of how to enter these correction 
factors of viscosity to the calculation expression is much more 
interesting.  From this point of view the works devoted to the 
calculation of waves and wave resistance in a viscous fluid are 
pursued further.  

Research on influence of viscosity on waves and wave 
resistance has been done in different directions. We are 

interested in research of viscosity influence on both 
progressive and ship waves.  It is natural to assume that this 
influence is of a different character.  The progressive waves 
keep their form even moving large distances.  The ship waves 
appear from the circular waves generated by the source 
movement.  Their length and amplitude vary during removal 
from the source. 

Let us consider progressive waves [Milne-Thomson 1960] 
whose height on the surface of a ideal liquid is small (waves of 
infinitesimal amplitude) and has the form 

 η = a sin(mx – nt)  (45) 

where m is the wave number, determined by the formula 
m = g/υ2, and n = g/υ is  the frequency of waves at a speed of 
distribution υ . 

The account of the tangential stress arising in a viscous fluid 
is expressed as an exponential factor.  The height of a wave 
enters as 

 η = ao exp(-2ν m2t) ( sin(mx – nt) (46) 

where t is the time after the moment of waves arising and is the 
kinematical coefficient of viscosity. 

If ν = 1.22.10-6, the height of the second wave practically 
has no change because the exponential factor is close to unity, 
(i.e. e–0.0007 ≈ 1).  Even the height of the fourth wave will 
change very insignificantly, some e–0.0021 times.  Hence, the 
viscous properties of a fluid do not noticeably influence 
progressive waves. 

A large body of research has exposed that the distinction 
between movement in ideal and in a viscous liquid shows itself 
as the factor depending on the kinematical coefficient of 
viscosity. 

Lamb [1947] gives a factor in which viscosity is taken into 
consideration in the calculation of progressive waves 

 ( )422exp υtvg−  (47) 

If time t = L/υ, i.e. the time, necessary for a wave to pass 
the distance equal to length of a ship hull, then 

 
2

4 5 3/ 2 1/ 2

2exp( 2 ) exp( ).g L
Fn L g

νν
υ υ

− = −  (48) 

Cumberbatch [1965] investigated the effect of viscosity on 
ship waves.  He has shown that the exponential decay rate is 
the main effect of viscosity and that the damping of the 
transverse wave system varies little, whereas the diverging 
system is more heavily damped.  He wrote that the main effect 
of the viscosity dependent term is an argument that gives rise 
to an exponential viscous decay factor exp(-rνg Bo cosθ/v 3), 
where the factor (Bo cosθ)-1 is found to vary only slightly from 
the value 0.25 over most of the transverse wave of Kelvin’s 
system, ν is a kinematical coefficient of viscosity, r is a 
distance from a source of perturbation. 
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Nikitin & Podrezov [1964] have carried out some very 
important research on surface waves of a viscous fluid of 
infinite depth.  They have obtained the expression of the wave 
height in the form 
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where .gσ
υ

=   

Using the following symbols δ we can write 
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Then the factor taking viscosity into account has the form 

 exp(-δ) = exp(-
2

5

8g rν
υ

). (51) 

To compare the expression of progressive waves we have  
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Then exp(-) = exp(-
2

5

2g rν
υ

).  It is easy to see that the 

argument turns out to be 4 times less. 
The ship waves appear to be the result of movement of a 

pressure impulse or a source.  Their form is determined by 
transformation of the circle waves when moving the source 
(Newman [1977], Pavlenko [1956]).  For this reason in order 
to take viscosity into account we turn to the solution of the 
Cauchy-Poisson problem found by Sretenskii [1941] by using 
the Navier-Stokes equations.  We used his formula (48), where 
η is a wave height 
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If we presupposed that time t, in which the bow wave 
reaches the aft wave-making point, and substitute it in the 
Sretenskii formula (48), we obtain the factor in the following 
form 

 ( )5///2/exp 2
1

2
3 FngLv−  (54) 

It is clear that the coefficient of molecular viscosity does not 
influence the dissipation of water waves.  That is why we 
replace v for turb.  There are some problems where the turbulent 

character of the flow is taken into account and due to the 
impossibility of its exact determination one simply replaces v 
for the coefficient of turbulent viscosity turb.  For example, with 
such a replacement one can see the diffusion of vortices in the 
problem [Kochin et al. 1963].  According to this the 
exponential factor in our case has the form 

 5///2/exp( 2
1

2
3 FngLvk turbturb −=  (55) 

where νturb is half of the turbulence coefficient of viscosity. 
This factor enters into the oscillatory interaction part of 

Michell’s integral I2  of equation (28) through F2(k) and F3(k) 
in the form 
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but does not enter in the main part because the bow waves 
begin lose energy after their formation thereby creating flow 
turbulence. 

The coefficient for turbulent viscosity in our calculations 
was determined by a trial and error method.  In the process of 
our calculation we had chosen the coefficient of turbulent 
viscosity to obtain a good agreement with experimental curve 
of wave resistance.  This coefficient has changed in the 
sufficiently tight limits for the different models. 

It is known that the turbulent viscosity is a hundred 
thousand or even a million times more than the molecular one.  
I.A. Kibel, in a study by Fedjaevskii et al., provided us with a 
real life description of turbulent viscosity when he wrote “the 
coefficient of turbulent viscosity of air equals the coefficient of 
the usual molecular viscosity of syrup, and the associated 
kinematical coefficient of turbulent viscosity of water (is equal 
to) the kinematical coefficient of molecular viscosity of shoe-
polish”.  That is why it was not a great surprise when this 
coefficient turned out to be about 0.08 – 0.16 rather than 
1.22k × 10-6. 

It is important that the parameter of the Froude number 
degree is equal to 5.  This factor, from equation (55), is in 
agreement with the Wigley factor of β = exp(-A/Fn5) obtained 
from testing many models [Wigley 1938].  It is even more 
important that the turbulent factor kturb is entered only in the 
oscillatory interaction part of Michell’s integral from equation 
(28).  For this purpose the new exponential form of the Michell 
integral is used.  

Our calculations were performed for many Wigley and 
Weinblum models and were in a good agreement with 
experimental data.  In Appendix A the symbol NT in figures 
1A – 21A is the coefficient of turbulent viscosity νturb.  In order 
to have a trustworthy method of calculating the ship wave 
resistance it is necessary to obtain a coefficient of turbulent 
viscosity for the real ship hulls.  

To summarize, the purpose of our last research was to 
determine if it is possible to include the correction factor that 
accounts for the viscosity of moving ship waves when 
calculating the wave resistance of the ship.  The second aim 
was to define the coefficient of turbulent viscosity by trial and 
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error and by doing so either validate or disprove the hypothesis 
of the turbulence effect of bow waves.  The third aim of the 
research was to determine the range in which the coefficient of 
turbulent viscosity varies. 

Our calculations confirm the hypothesis that a certain part of 
the bow ship wave’s energy is wasted on turbulence of a flow 
around the moving ship and does not participate in the 
interaction with stern system of waves.  The plausible 
explanation for the absence of humps and hollows in the 
experimental curves of wave resistance of different models at 
low Froude numbers has been obtained.  

The complex structure of the bow ship waves is the factor 
which complicates the development of an exact theory of wave 
resistance for displacement ships. 

The given research allows us to make the following 
conclusion: the solution of a problem of wave resistance is 
very complex if it is to be derived by the solution of a 
boundary value problem with exact boundary conditions.  
Apparently, it is necessary to carry out this problem in two 
stages.  In the first stage it is necessary to find wave resistance 
in an ideal liquid, and after this to take into account the fact 
that the waves on a free surface become turbulent under the 
influence of viscous properties of a liquid.  A more or less 
exact definition of the coefficient of vortical or turbulent 
viscosity is the main difficulty and must be the purpose of new 
research. 

6.  THE COMPARATIVE CRITERION IN DECIDING ON 
THE SHIP HULL FORM WITH THE LEAST WAVE 
RESISTANCE 

As noted above in part 3, comparison of the main values of 
the coefficients of wave resistance with the experimental ones 
for the Wigley and Weinblum models showed that the relation 
between the main values and the experimental ones for small 
Froude numbers was basically preserved. Therefore, the main 
part of the new form of Michell’s integral can be used as a 
comparative criterion in deciding on ship hull form with the 
least wave resistance. To ground such method for optimisation 
of ship hull forms there was a need to ascertain that there is a 
minimum of wave resistance for changes of the hull equation 
coefficients. The analysis has verified that such minimum of 
wave resistance does exist. 

The comparative criterion was chosen as the ratio of the 
main part of Michell’s integral Rg to displacement of ship D 

 g gK R D= / .  (57) 

As noted in the first part of this paper, the application of 
numerical integration to the wave resistance problems 
introduces large errors.  Hence, the comparative criterion for 
the real ship hulls cannot be practical for computer 
calculations.  Therefore, the primary source of this trouble is 
the need to present a ship hull in an analytical form.  For our 
purposes, eight equations were worked out in the form 
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To test whether the minimum of wave resistance does exist, 

the equation of the wide Weinblum model 1102 was used 
(η = (1-ξ4) (1- 0.4ξ2)⋅(1- ζ12)⋅ [1- 0.5(ζ+ζ3) ⋅ζ2]) in the form of 
equation (3).  While we change the coefficient a2 and exponent 
the S1, other coefficients a1, a3, and exponents S2 and S3 change 
as well provided that the block coefficient δ, the draft T and the 
length L between load waterline perpendiculars are constant.  
From here there was revealed that minimum wave resistance 
can be obtained provided the underwater volume of the ship 
hull moves as close to the bottom or the middle section as 
possible, that entails a diminution of the waterline entrance 
angle. 

Figure 13 shows dependence of the Kg = Rg/D on both the 
coefficient a2 and the Froude numbers for the model 1102.  
The thick line connects points of the minimal values of wave 
resistance on different Froude numbers. 

To find the hull shapes with the least wave resistance 
programs were carried out in which the forms of frames or 
waterlines were changed while the block coefficient δ, the 
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draft T, and the relative length L/B were constant.  In our case 
all the models had length L = 4.5, B = 0.45, T = 0.18, and 
block coefficient δ = 0.6.  The choice of the hull form was 
carried out for three ranges of relative speeds: 
• 0,15 ≤ Fn ≤ 0,20 (low speeds);  
• 0,21 ≤ Fn ≤ 0,26 (middle speeds);  
• 0,27 ≤ Fn ≤ 0,31 (high speeds).  
The above equations allow us to change the form of the 

waterlines from concave up to convex, and to change the form 
of the frames from V- figurative up to U - figurative and even 
up to a bow bulb or to a midship side bulb.  However, not all 
these equations are equivalent.  For example, the fourth 
equation gives both the traditional hull and the bulb-bow form.  
The sixth equation gives the hull with a midship side bulb and 
traditional hull too.  The remaining six equations describe 
traditional hull forms of displacement ships. 

For this research two means are chosen.  The first way 
involves a variation of the form of waterlines at preservation of 
the form of frames, and the second way consists of varying the 
form of the frames at the chosen character of waterlines.  

 

 
Figure 13.  The graphical displays of Rg/D as a function of 
coefficient a2 for the third equation of the hull of Weinblum’s 
model 1102 with δ held constant. 

These calculations have allowed us to make the following 
conclusions. 

The minimum exists only for coefficients of waterlines.  For 
the majority of the equations, a minimum is not present at a 
change of the form of the frames.  The monotonous change of 
the degree S1, S2, and S3 results in either a monotonous 
reduction or in a monotonous increase of wave resistance.  

At low speeds (in the first range of Froude numbers) the 
optimum waterlines have a concavity along the draught and the 
frames turn out V-figurative.  The variety of the hull form 
obtained by all these equations for Froude numbers 0.16 – 0.23 
demonstrated that the hulls with the least wave resistance have 
similar forms.  Even the fourth equation has produced the hull 
without a bulb.  It gives concave shapes on small Froude 
numbers and bulb shapes on high ones.  At middle speeds (in 
the second range of Froude numbers) waterlines are almost 
straight and the frames become U-figurative.  At high speeds 
waterlines turn out convex and the frames are U-figurative.  

For Froude numbers between 0.26 and 0.27, calculations 
were made for all equations (1 through 8).  It was found out 
that, at these Froude numbers, the waterlines are always 
convex.  The traditional forms have U-figurative frames, but 
with some moving aside from the bottom to a main waterline.  

The sixth equation gives the least criterion Kg among all of 
them.  The best form has a midship side bulb.  One can see an 
example of the optimal forms obtained from equation 6 at 
Fn = 0.27 in appendix figure 6B.  

Models with a bulb-shaped bow (fourth equation) have the 
greatest value Kg at the given Froude number. Despite the 
different forms, other equations give almost equal values of 
wave resistance (the hulls with the least criterion Kg are shown 
in Appendix B).  

Besides, the choice of the hull form with the smallest Kg 
value was made (with the help of the fourth equation) for 
different Froude numbers.  As it is easy to see from Appendix 
C, the hulls vary from traditional forms on Fn = 0.15, 0.18, 
0.23 up to the form with a bulbous bow on Fn = 0.27. 

7.  A THEORETICAL STUDY OF SHIP SHAPES 
CURVATURE INFLUENCE ON WAVE RESISTANCE 

The analysis of the waterline’s curvature influence on the 
wave resistance was made by means of the Michell integral in 
the Pavlenko [1937; 1956] representation and in doing this the 
mathematical model of the ship hull with developable surface 
was used. 

The method of constructing a lines drawing and designing 
the ship forms by using developable surfaces had been carried 
out by Gotman [1979; 1985].  The comparative towing tank 
tests showed the possibility of designing ship forms with DS 
(by using developable surfaces) without any loss in 
hydrodynamic quality.  The analytical representation of ship 
hull shapes with DS is a suitable mathematical model for 
conducting theoretical research in ship hydrodynamics.  

(a)  The mathematical model of the ship hull with developable 
surface and Michell’s integral 

The analytical expression of the ship’s hull with a 
developable surface is the system of five equations [Gotman 
1979].  Two equations of this system are given by the parallel 
basis sections of the hull surface.  The third equation is the 
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equality of the inclination angles of the lines of tangency to 
these basis sections, passing through the points of the 
intersection of basis sections with the generatrices.  The 
remaining two equations are equations of this straight 
generatrix itself.  In general, this system may be solved by the 
iterative method, but when the waterlines are chosen as basis 
sections the equation of a hull surface is given in the form 
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if the equations of the basis waterlines are presented by second 
order polynomials 
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where t = z/T is relative draught.  The coefficients in equation 
(58) depend on the parameters of equation (59) and the draught 
of the basis waterlines. 

The Pavlenko representation uses the equation of ship hull 
instead of its derivative as in Michell’s integral. 

Since y = f(x,z) is taken in the form of equation (58), the 
inner integrals of Michell’s integral can be integrated with 
respect to x and z, giving 
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where  
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Here the functions S1,  S2, S3, Q1, Q2, and Q3 are trigonometric 
functions from ko, and the functions L1, L2, L3 depend on 
relative draft, po and the form of the hull.  Here  
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The study is carried out in the dimensionless coordinates 
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It is supposed that a ship has no cylindrical middle body and 
the forebody may be described by equation (58).  In order to 
simplify the analysis, the ship which has a symmetrical fore 

and aft are considered.  In this case the integral G(θ) vanishes 
and the expression H(θ) has the form 
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where  

 L1 =  a1F1 + a2F2 + a3F3, 

 
 L2 =  a4F2 + a5F3 (65) 

 
 L3 =  a6F3 

while the functions F1 , F2 and F3 are equal respectively  

 

( )
( )

( )

0 0

0

07 7 0

7 0

0

1 2
2
0

2

0

3 7

1
,

1 ,

{ [ 1 ]

( )},

T T
L L

T
L

T
L i

i

p p

p

pa

Tpe eLF
Tp L

eF Tp L
Tpa e aF E L

TpaE L

− −

−

− −
=

−
=

= − + −

 (66) 

The parameters a1 through a7 algebraically depend on the 
coefficients of equation (59) and for t = 0 are as follows: 
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(b)  Analysis of Michell’s integrand 

In order to determine the role of every component H(θ) in 
expression (64) it is necessary to evaluate the order of the 
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trigonometric functions with L1, L2 and L3 and then the 
absolute values and signs of the last. 

Let us consider the trigonometric expressions for ko→ 0, i.e. 
when the velocity increases to infinity.  It is easy to see that for 
ko→ 0 the limits are equal. 
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Hence these trigonometric expressions are changing from 0 
to 1, ½, and ¾ , respectively.  

If the velocity of steady motion is small, i.e. ko→ ∞, then 
these expressions are vanishing.  

Expressions L1, L2 and L3 can have different signs which 
depend on the behaviour of the functions F1, F2 and F3 and also 
on the parameters from equation (58) which are connected with 
the coefficients of the ship hull surface equation.  The 
functions F1, F2 and F3 depend on ship speed and a relative 
draught. When the speed increases and p = T/(L×Fn2 cos2θ) 
vanishes then 
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The behavior of the function F3 is considerably complicated 
because it depends not only on p but also on the parameter a7 
which is connected with a surface curvature.  The study of the 
function F3 has been carried out in the work by Gotman [1979; 
1985]. Here only the graph of the function F3 in respect to p 
and a7 is represented in figure 14. 

The effect of the functions F1, F2, F3, L1, L2 and L3 on the 
value of the Michell’s integrand can be analysed only if these 
functions are not oscillating when θ changes from 0 to π/2.  
The analysis showed that the functions F1, F2 and F3 are 
monotonically decreasing on this interval of θ variation.  It is 
easy to see by means of the signs of their derivatives.  The 
behaviour of the function F3 depending on θ was verified by 
the calculation.  The behaviour of the functions F1 and F2 
turned out monotonical and decreasing.  

The monotonical behaviour of the functions F1, F2 and F3 in 
the process of integration with respect to θ provides the 
monotonical behaviour of the expressions L1, L2 and L3.  The 
calculations of the different F1, F2 and F3 showed that this 
functions decrease without intersecting.  The expressions L1, L2 
and L3 behave in the analogous way. 

One can see from expressions (64), (65), and (66) that the 
function F3 and the form parameter a7 play the leading part in 
the formation of the expressions L1, L2 and L3.  For visual 

demonstration let us transform expressions (67) in order to see 
the role of a7 in each parameter (with t2 = 1) in the following 
way: 
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 (70) 

 
Figure 14.  The function F3 in respect to p and a7. 

Let us consider the expressions L1, L2 and L3.  From 
equation (64) L1 = a1F1 + a2F2 + a3F3. 

In this expression F1, F2 and F3 are positive and F1 is 
approximately half as much as F2.  From figure 14 it is seen 
that the function F3 can be made as small as one likes.  Thus, 
the order of the value L1  is defined more by the order of 
member a2 F2 than a1 F1 due to two causes.  Firstly, a1 is 
defined by the differences mo - no and m1 – n1 which for 
conventional vessels are usually small and, secondly, F1 is half 
as much as F2.  Parameter a2 depends on relative width mo, 
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which can’t be diminished either by a7 or by any other 
coefficients.  Consequently, it is necessary for the diminution 
of the order-of-magnitude L1 to select the curvature of upper 
and lower waterlines so that a2 should become as small as 
possible.  Taking into account that the convex waterline has 
m2 < 0 one can get a diminution of a2 by the diminution or the 
change of sign of m2 for positive signs that can be achieved at 
the expense of the upper waterline concavity. 

Figure 14 shows that when a7 decreases F3 simultaneously 
decreases.  Hence, as can be easily seen from the expressions 
(70) the order-of-magnitudes of the value L2 = a4 F2 + a5 F3 is 
diminishing directly at the expense of a7 and through F3 . 

The third expression L3 = a6 F3 depends on F3 and on the 
parameter a6 = m2, i.e. only on the hull surface curvature, 
namely on the load waterline curvature.  

The analysis that was carried out led to the following 
conclusions 

1) The integrand H(θ) depends on the expressions L1, L2 
and L3, which are connected with hull form and 
exchange monotonically in the process of integration in 
respect to θ  from 0 to π/2 so that one can decrease the 
value of Michell’s integral by decreasing the order-of 
magnitude of these expressions. 

2) The influence of the ship principal particulars on the 
magnitude of the Michell integral appears through the 
relative draft T/L that plays the same role as the inverse 
value of the square of the relative speed. 

3) By varying the coefficients m2 and n2 that define basic 
waterline curvatures one can decrease the value of 
Michell’s integral.  The parameter of the hull form a7 
connected with the above coefficients determines the 
order-of-magnitude of expressions L1, L2, and L3. 

4) It is impossible to find the optimal relationship between 
the coefficients m0, m1, m2, n0, n1, and n2 which would 
be good for all ships.  Having the principal parameters, 
relative speed, and the main parameters of the hull form 
presented as block coefficient, sectional area curve etc., 
one must choose the relationship between m0, m1, m2, 
n0, n1, and n2 so as to reduce a2, a6, a7, and F3. 

5) The fact that the coefficients m0 and m2 influence the 
order-of-magnitude of the integrand confirms once 
more the importance of load waterline shape while 
designing the hull form.  

(c)  The influence of the coefficients of the ship fore body on 
wave resistance 

As shown above, it is necessary to reduce a7 and F3 for the 
reduction integrand of the Michell integral.  For this purpose 
there are different possibilities.  

It is easy to see in figure 14 that when a7 = -1 the function 
F3 goes to infinity.  Hence, it is undesirable to choose such 
combinations of the coefficients that define the curvature of the 
waterlines, which give a7 = -1.  In real practice it may occur if 
the ship has a flat bottom and such basic waterlines shapes that 
the developable surface pulled on them is tangent to the base 
plan.  

Let us consider the right part of the graph F3 in figure 14 

where a7 is positive.  The upper and lower waterlines have the 
same curvature in this part of the graph and it means that all 
waterlines curvature of the bow end are convex or concave and 
the upper waterlines curvature is greater than the curvature of 
the lower ones.  This occurs frequently in the case of 
conventional ship forms.  

If a7 tends to infinity (when the waterline form is constantly 
along the draft) only the load waterline form may decrease the 
integrand.  In this case we have the “simplified” hull shape 
with a cylindrical fore body and the largest possible magnitude 
H(θ) because if the displacement and the placement of the fore 
perpendicular have been given the coefficients of the 
waterlines m0, m1, m2 are single valued and the integrand has 
the largest value.  It is just the case when one considers the 
wave resistance of the struts with the finite draft.  

The interval -1 < a7 < 0 is of the greatest interest.  For the 
sake of study this interval is divided into three parts (-1 -
 0.7),(-0.7 - 0.5) (-0.5 - 0).  When a7 belongs to the first part of 
the interval the integrand has very large magnitude increasing 
to infinity.  

The third interval, when a7 is equal to values from -0.5 to 0, 
corresponds to the hull forms with the hull shape discontinuity 
near the free surface.  In this interval the function F3 is 
negative.  In this case the function F3, instead of decreasing the 
integrand, actually increases it.  

The middle part of the interval of the value a7 from -0.7 to   
-0.5 gives the possibility to decrease F3 along with the 
integrand.  The negative value a7 can be obtained only in the 
case when the curvature of the upper and lower waterlines has 
different signs or if the curvature of the lower waterlines is 
much larger than that of the upper ones.  The bulb can achieve 
this situation.  This part of the graph in figure 14 indicates that 
the choice of the bulb shape is a very fickle problem. 

The left part of the graph of the function F3, when a7 < -1, 
belongs to case when the signs of the curvature of the upper 
and lower waterlines are equal, but the curvature of the lower 
waterlines is much greater than that of the upper ones.  

Hsiung [1981] was looking for the optimal ship form with 
minimum wave resistance by means of the technique of 
mathematical programming and has obtained the best forms 
when a wing-like bulb is at z = 0.25T with a7 = -0.75.  In this 
case from figure 14 we have a sufficiently large value of the 
integrand and hence a large value of the wave resistance.  The 
experiment, which was conducted on such hull shapes by 
Hsiung [1981], showed that in this case the resistance increases 
greatly and the hydraulic jump takes place as on the shallow 
water. 

8.  CONCLUDING REMARKS 

The investigations of Michell’s integral showed the limits in 
which this integral can be used for practical purposes.  The 
very important experiment with two struts gave the answer to 
the question about the influence of viscosity of a fluid on the 
ship wave resistance.  This experiment argued against the 
popular opinion that the humps and hollows are absent in an 
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experimental curve because of action of the boundary layer, 
wake, and the sheltering effect of the ship hull. 

Our calculations confirm the hypothesis that a certain part of 
the bow ship energy is wasted on turbulence of a flow around 
the moving ship and does not participate in the interaction of 
the bow and stern wave systems.  Hence revealing the reason 
for the discrepancy between the Michell’s and experimental 
curve. 

The new form of Michell’s integral made it possible to 
determine the previously unknown peculiarities of this integral. 

If the Froude numbers are above 0.29 – 0.33 the computed 
values of the main and oscillatory parts of Michell’s integral 
begins to increase by several orders-of-magnitude and the 
Michell resistance becomes a small difference of large values.  
This phenomenon reflects the radically different character of 
wave resistance and wave patterns at low and high speeds of 
ships.  

Apparently, the turbulence of a flow plays a significant role 
in wave resistance of models and ships.  The turbulent 
condition of the water during tests in the basin causes a great 
deal of disorder of the experimental data received in different 
tanks.  The wide scatter of experimental data for the same 
parabolic Wigley model obtained from different towing tanks 
(figure 4) is attributable to different intensities of fluid 
turbulence during the test process. 

The comparative criterion in choosing the ship hull form 
with the least wave resistance was obtained and verified for 
eight models outlined by different equations.  With the help of 
these equations the optimum forms were obtained which are 
well coordinated with the known forms carried out in tanks.  It 
was shown that the hull forms with a midship side bulb give 
the least wave resistance. 

The study of the influence of the ship hull surface curvature 
on the wave resistance combined all possible forms of ship 
hulls.  It was shown that the “simplified” hull shapes with a 
cylindrical fore body have the largest possible value of wave 
resistance.  It was shown also that the designing of the fore 
bulb is very capricious undertaking. 

As a result of this research it is possible to tell that, in 
connection with the difficulty of the solution of a boundary 
value problem with exact boundary conditions on a free 
surface and on a surface of the hull, it is possible to try to solve 
the problem about wave resistance in two stages.  First we find 
the wave resistance of a vessel in an ideal liquid, and then we 
must take into account the influence of the turbulent viscosity 
on the interaction of wave systems. 
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APPENDIX A:  WAVE RESISTANCE COEFFICIENTS OF WIGLEY AND WEINBLUM MODELS 
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Figure 1A.  Wave resistance coefficients of Wigley model 829. 

  

Wigley 1805a
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Figure 2A.  Wave resistance coefficients of Wigley model 1805a. 
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Wigley 1805b (Shearer model 3201)
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Figure 3A.  Wave resistance coefficients of Wigley model 1805b. 

 
 

Wigley 1846a
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Figure 4A.  Wave resistance coefficients of Wigley model 1846a. 
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Wigley 1846B
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Figure 5A.  Wave resistance coefficients of Wigley model 1846b. 

 
 

Wigley 1970b
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Figure 6A.  Wave resistance coefficients of Wigley model 1970b. 
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Wigley model 1970c
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Figure 7A.  Wave resistance coefficients of Wigley model 1970c. 

 
 

Wigley N43
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Figure 8A.  Wave resistance coefficients of Wigley model N43. 



 

Oceanic Engineering International 107

Wigley model 2038
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Figure 9A.  Wave resistance coefficients of Wigley model 2038С. 
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Figure 10A.  Wave resistance coefficients of the parabolic Wigley model. 
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Wigley model 2130a (unsymmetric)
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Figure 11A.  Wave resistance coefficients of Wigley model 2130a (unsymmetrical). 

 
 

Weinblum 1093
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Figure 12A.  Wave resistance coefficients of Weinblum model 1093. 
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Weinblum 1097
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Figure. 13A.  Wave resistance coefficients of Weinblum model 1097. 

Weinblum 1098
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Figure 14A.  Wave resistance coefficients of Weinblum model 1098. 
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Weinblum 1100
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Figure 15A.  Wave resistance coefficients of Weinblum model 1100. 

 

Weinblum 1110
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Figure 16A.  Wave resistance coefficients of Weinblum model 1110. 
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Weinblum 1111
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Figure 17A.  Wave resistance coefficients of Weinblum model 1111. 

 
 

  

Weinblum model 1112
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Figure 18A.  Wave resistance coefficients of Weinblum model 1112. 

 



Oceanic Engineering International  112 

 

Weinblum 1113
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Figure 19A.  Wave resistance coefficients of Weinblum model 1113. 
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Figure 20A.  Wave resistance coefficients of Weinblum model 1114. 
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Weinblum 1136
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Figure 21A.  Wave resistance coefficients of Weinblum model 1136. 

Explanation of figures 1A-21A 

In these figures are shown  
1) Measured coefficient of wave resistance ( Measur. Coef. Rw ); 
2) Michell’s curve (Michell); 
3) Main part of the Michell integral (Main part); 
4) Value of the Michell integral taking into account the influence of turbulent viscosity on the interaction of bow and stern wave 

systems (with viscous effect. NT = .08 or some other value).  Here NT is the half the coefficient of turbulent viscosity. 
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APPENDIX B:  THE SHIP HULL SHAPES WITH LEAST WAVE RESISTANCE ON Fn = 0.27. 
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Figure 1B.  Optimum hull form by equation (1). 
Rgd = 2.4366. 
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Figure 2B.  Optimum hull form by equation (2).  
 Rgd = 2.5991. 
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Figure 3B.  Optimum hull form by equation (3). 
Rgd = 2.2019.  
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Figure 4B.  Hull form with bulb by equation (4). 
Rgd = 1.891. 
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Figure 5B.  Optimum hull form by equation (5).  
Rgd = 2.2559. 
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Figure 6B.   Optimum hull form by equation (6). 
Rgd = 1.7231. 
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Figure 7B.  Optimum hull form by equation (7). 
Rgd = 3.5675. 

1 2
4

6
8

10
 

Figure 8B.  Optimum hull form by equation (8). 
Rgd = 2.4586.  
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APPENDIX C:  THE HULL SHAPES WITH THE LEAST WAVE RESISTANCE AT THE DIFFERENT FROUDE NUMBERS 
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Figure 1C.  The ship hull with the least wave resistance 
at Fn = 0.15. 
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Figure 2C.  The ship hull with the least  wave resistance 
at Fn = 0.18. 
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Figure 3C.  The ship hull with the least wave resistance 
at Fn = 0.23. 
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Figure 4C.  The ship hull with the least wave resistance 
at Fn = 0.32. 

 


