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The graphic method of constructing lines drawing of hull with developable skin is described. This method is
simple and does not require cumbersome constructions and nor does go beyond the limits of lines drawing. The
algorithm of analytical construction of development of a hull skin also is described.

Evident technological advantages of the ship hull with developable skin brought about the formation of, so-
called, “simplified” shapes when the whole ship hull is designed from developable surfaces and therefore necessarily
has a sharp chine. A distinguishing feature of the suggested method for designing a ship hull described here is that it
allows to create well-streamlined shapes without any sharp chine and consequently without loss in hydrodynamic
quality. Comparison towing tank tests has confirmed this possibility.

Using computer programs the coordinates of hull and the development are produced simultaneously in two
Cartesian systems: the ordinates of a lines drawing are given in a space system, and ordinates of frames and
waterlines on development of skin are presented in plate. The review and detailed description of different methods
for construction and design of ship shapes are given in the monograph of the author (Gotman 1979). Solutions
necessary for computer-aided construction of lines drawing and of development of skin at the stages of design and
the preparation for the production of the mould-loft are given. The examples of shapes of different kinds of ships
from developable surfaces are given too. This paper acquaints the reader with a method of design suggested in the

monograph.
1.INTRODUCTION

The ship hull with developable skin has the
following advantages over wusual forms: the
construction and coordination of lines drawing
becomes simpler; the elaboration of computer programs
is facilitated; the production of the mould-loft is
simplified; the process equipment of hull shop becomes
simpler by the unification of tools for building; the
quality of skin is improved and the repair of the hull is
easier; the skin production becomes less labor-
consuming, since no beating or heating for curving the
metal sheets is required.

Much less computer resources will be necessary for
deriving information about a buoyancy, stability and
seakeeping of a ship, and also for preparation for the
production of the mould-loft than for the conventional
ship hulls. Volumes of initial data decrease because
only the base frames (or waterlines) are included, and
on their basis all the remaining ordinates of hull are
obtained. In addition no special program for the
coordination of lines drawing is required, since the
surface itself rather than the routine carcass of the
waterlines and the frames is constructed. There is no
necessity to analyze or describe each plate of skin on
the mould-loft because all plates have to lie on the hull
framework by means of curving. Therefore, instead of a
skin expansion the exact development of skin is
produced.

The hull shapes with developable skin can be
described analytically (see formula 10) thus making it

possible to use them for hydrodynamic research. We have
used them to study the effect of a distribution of inner
curvature of hull surface on the wave resistance and on
the friction resistance of a ship.

The above-listed advantages from time to time give
rise to new methods for constructing lines drawing with
developable skin. However, the authors of the new works
are often poorly acquainted with existing solutions. This
may be attributed to the lack of good reviews with
complete bibliographies and descriptions of existing
results. Perhaps the reason for this is that the description of
developable surfaces is presented in mathematical journals
and their practical applications are scattering over the
special magazines for different industries. To make up for
this deficiency, a brief bibliography of constructing lines
drawing from developable surfaces methods is given in the
end of this paper.

There is a wealth of experience accumulated of
building simplified ship hull designed from developable
surfaces. The fish ships with a skin from conic surfaces
were under building (Hutch 1964). Trade vessels with
fully developable hull skin are under construction on
Burmeister & Wain Shipyard in Denmark (Norskov-
Lauritsen [1985]). There is a long history of high-speed
boats with similar construction (Krisov 1935, Kilgor
1967, Nolan 1971, Clements 1981, 1984, Trincas &
Grubisic. 1981). Many years ago a method of constructing
lines drawing and designing of river vessel hulls from the
surface with a rib return (or the tangent developable
surface) was worked out in Russia. Middle body of these
vessels has a sharp chine and the ends are well-streamlined
(Pavlenko 1948, Pjatezkii 1960, 1962, 1963, 1965).



The review of recently developed methods of
designing of ship shapes from developable surfaces is
given in the paper of Chalfant & Maeckawa (1998) then
their description is not given here.

There are some works devoted to the methods for
applying developable surfaces not to ship hulls but to
other sheet construction, for example, to aircraft wing
or different tubes (Bodduluri.& Ravani 1992, 1993,
Gurunathan & Dhande 1987, Weif & Furtner 1988,
Dhande & Ramulu 1984).

Unlike the method developed by the author of this
paper, all other methods are too complicated for
engineering use. In all last methods, except the works
of Aumann, the spatial curves are taken as basic lines,
which are difficult to obtain analytically. The
distinguishing feature of the suggested method is that
either frames or waterlines are assumed as the basic
curves. The sharp chine and deck line are produced
simply as lines of intersection of two surfaces as the
bottom, side and deck cover. Aumenn uses the same
idea, as author of this paper, but the method of the
author was registered in the bulletin of the inventions
more than the forty years ago (Gotman 1960).

Many kinds of ship hull shapes have been worked
out to obtain the method of shapes design from
developable surfaces. It turns out that it is possible to
receive the shapes of ship hull without any sharp chine
and, therefore, without any losses of hydrodynamic
quality provided that 5 % of the skin of a vessel
remains not developable. In developing computer
programs for design and for technological preparation
of production an analytical model of ship hull with the
developable skin was obtained and a mathematical
problem of deriving the development of a skin was
solved for the first time (Gotman 1975).

1.THE METHOD OF CONSTRUCTION OF LINES
DRAWING

Gaspard Monge (1746 — 1815) was the first one to
describe the developable surfaces in his “Application
de I’analyse a la géométrie” (1805). Monge defined
developable surfaces as follows: «A developable
surface is called the surface possessing of such property
that, presumed it’s flexible and inextensible, we can,
having bent such surface, to impose it on a plane, to
which it will adjoin then by all of its points without
stretching or tearing». He has also recognized three
types of developable surfaces: cylinder, cone and
surface of tangents to a double curvature curve (surface
with the rib of return or tangent developable surface),
using to this day.

Developable surfaces are zero Gaussian curvature
surfaces. Conclusions can be drawn from Gaussian
curvature being zero: 1) there is a single straight line
belonging to this surface that passes through each point
of the surface; 2) a tangent plane passing along each
straight generatrix of the surface remains invariable
(Gotman 1979).

In order to save the Gaussian curvature being equal to
zero, does not request any definite locations of its singular
points kind of the cone top. Therefore, a developable
surface can be treated as a surface with arbitrary
arrangement of singular points. These surfaces we have
namedaspolyparametrical developable
surfaces (Appendix A, figure 1). The conical, cylindrical
and the surfaces of tangential lines are the particular cases
of polyparametrical surfaces.

The inherent particularity of polyparametrical surfaces
is that any two infinite close located straight generatrices
may be either crossing or parallel ones. Just this
particularity leads to the tangent plane being invariable
along any straight generatrix of the surface. The double-
curved surfaces have no such properties.

The polyparametrical surfaces provide much greater
possibility of designing different ship hull forms because
there are no restrictions encountered by a designer using
cylindrical, conic or surfaces of the rib of return. Using
polyparametric surfaces for constructing lines drawing is a
much simpler method. Unlike all known methods of
hydroconic ship forms constructing, this method does not
require any additional constructions beyond net of lines
drawing for finding straight generatrices. (Hatch 1964,
Kilgore 1967, Pavlenko 1948 et all). For example, when
the only cone surfaces are used it is necessary to search the
top of every cone outside the lines drawing net that leads
to restriction of the vessel size (Hatch 1964).

The positions of straight generatrices are determined
by a very simple consideration. Frames, waterlines, and
buttocks planes intersect the tangent plane to the surface at
parallel straight lines. Thus, the lines tangent to any frames
(buttocks and waterlines) ought to be parallel to each other
at the points of intersection with generatrix because all
these lines of tangency are lying on one and the same
tangent plane and at the same time they may be considered
as the lines of intersection of the tangent plane with a
system of the parallel planes (Appendix A, figure 2). The
method of construction is based on this property. If the
tangent lines resting on one generatrix are not parallel to
each other it means that the surface is not developable.

Usually, the construction of a lines drawing is carried
out using the sectional area curve. First, the sections of
frames with the given area are plotted and then the
coordination of the hull surface is performed. The initial
data employed for conventional ship form designing,
except the sectional area curve, include the load waterline
and its center of gravity, the side deck line, the line of
sharp chine (if there is one), the line of bottom, and the V-
shaped or U-shaped frame forms. All these characteristics
have some minor changes when one constructs a lines
drawing from developable surfaces.

The construction of the lines drawing may be done on
the only in a single projection. The remaining projections
are coordinated as well. The method of construction of the
bow end of ship with developable skin by the generatrices
is shown in Figure 3 (Appendix A).

Thus, the suggested method of constructing lines
drawing differs in the coordination of hull surface being
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carried out by straight generatrices rather than by lines
drawing net. The points of frames intersection with the
net of drawing are used for verification and for drawing
waterlines and buttocks

3. DESIGN OF THE WELL-STREAMLINED SHIP
HULL SHAPES FROM DEVELOPABLE
SURFACES

The method of ship shapes designing from
developable surfaces is based on the evident statement:
it is impossible to create the ship hull from one sheet of
surface, but if to left 3 — 5 % of hull surface be not
developable in the places of going from the ship ends
to the middle body, it is possible to design any well-
streamlined hull shapes without sacrifice of
hydrodynamic quality. On designing the hull it is
necessary only to save its subdivision into bow, a stern
part, and a cylindrical middle body (Appendix A,
figure 4).

On working out the method of well-streamlined
hydroconic ship shapes we had to examine what hull
form parameters underwent the greatest changes. For
this purpose, different kinds of hull shapes with
developable skin were drawn and analyzed (see figures
5 and 6, Appendix A).

This analysis shows that the sectional area curve at
the hull ends has insignificant changes. The
comparative towing tank tests shows that such changes
in this curve do not influence the ship resistance.

When the hull shapes are designed from
developable surfaces, the distribution of curvature is
changing along the length and draft of a ship. The
distribution of curvature was studied for different kinds
of analytically represented ship forms. Various ship
curves of Arzeulov, Popov, Chapman and so on were
used for this investigation. As it turns out, even the
very smooth hull shapes have the distribution of the
curvature, which is not subject to any quantity and sign
regularities. Then the requirement of the Gaussian
curvature equality to zero is not a great restriction.

However, if we desire to make the whole end of
hull from developable surfaces it is impossible to
preserve S-shaped waterlines of the ship bow.
Nonetheless, the towing tank tests showed that S-
shaped waterlines can be substituted for straight ones
without any loss in hydrodynamic quality.

To verify a hydrodynamic quality of different
kinds of hydroconic ship hull with developable skin,
comparative towing tank tests were carried out. Well-
streamlines ship models with low resistance were
chosen as prototypes (Appendix A, figures 5 - 9). The
comparative towing tank of the cargo- and passenger
catamarans, river vessels “Rodina” and “Sevan”, and a
high-speed shallow-draft river vessel were carried out.
Figure 5 illustrates the possibility to design a hull
shape of marine ship with a bow bulb and a tunnel
stern from developable surfaces. The river vessel
"Sevan" has hull shapes of the same type as "Rodina",

the results of towing tank tests of these vessels are similar
too, and therefore, they are not shown in this paper.
It should be noted that it is necessary to shift the positions
of the center of buoyancy and center of load waterline but
no more than by 0.5%.

The models of river vessels “Rodina” and “Sevan” had
short cylindrical middle body, V-shaped frames and S-
shaped waterlines. The cylindrical middle body of the
model with developable skin was made a little longer, the
waterlines were made straight or slightly convex, the
frames retained the V-shaped or U-shaped frame forms.
The non-developable transitional parts of hull surface
remained in the regions of 6-8 and 13-14 theoretical
sections. The resistance of the hull shapes with
developable skin is the same as of initial ship forms.

Hull forms of the catamarans taken for the comparison
had no cylindrical middle body but had S-shaped
waterlines and V-shaped frames. The hull variants of
catamarans from developable surfaces had no S-shaped
waterlines, but all principal peculiarities of form were
preserved. It should be noted that the achievement of high
hydrodynamic quality of catamarans is more complicated
than that for single-hull ships because even small changes
in the forms of catamaran lead to the essential changes in
the residual resistance. Nevertheless, the hull shapes of
catamarans with developable skin had the same resistance
as the initial ones.

Three variants of river vessel “Rodina”-type with the
project velocity Fn = 0.22 are shown in Figure 6. The
upper variant @ is the usual shapes of vessel “Rodina”.
The variant b is the well-streamlined shapes of this vessel
from developable surfaces; the variant ¢ is the hull with
developable skin, which has a sharp chine. The
comparative towing tests show that the resistance of
variant b is less than one of variant a; and variant with a
sharp chine has the greater resistance than others. These
tests were carried out to show the unacceptability of
“simplified” shapes for commercial vessels. There is little
point in having a small profit in ship hull building to lose
velocity in each trip.

Three hull shapes variants of the high-speed river
shallow-draft vessel R69 with developable skin are shown
in figure 7. The changes in frames sufficient for the
surface of a hull to be developable are shown in Figure 8.
Figure 9 shows the results of comparative towing tank
tests (Appendix A). The second variant of hull with
developable skin has the same coefficient of residual
resistance as the usual one. The third variant with almost
straight frames has the greatest residual resistance. The
first variant has the greater resistance than the second
variant due to the larger entrance angle of bow waterlines,
but its resistance is lower than for the third variant.

In conclusion it should be noted that it is easy to
obtain the whole well streamlined hull shapes providing if
small parts of hull surfaces are left not developable. The
stern tunnels, bow bulbs and well-flared bow represent the
most labor-consuming forms and they require a great
experience in designing ship hull shapes with developable
skin, but, nevertheless, it is possible.



4. COMPUTER-AIDED CONSTRUCTION OF
THE DEVELOPMENT OF SHIP HULL SKIN

Although developable surfaces can be unrolled
isometrically onto a plane without stretching or tearing,
it is not simple to find the position of waterlines and
frames of the ship’s hull with developable skin on the
development plane. The problem consists in the
transferal of the equations of waterlines and frames
from the theoretical lines drawing onto the hull skin
development. The theoretical solution to this problem is
to use invariants of a bending of surfaces, which are the
Gaussian curvature, geodesic curvature, the lengths of
arcs, and angles between curves lying in the surface. To
obtain the solution of this problem on the computer the
analytical expression of a ship hull surface with
developable skin is used.

To define a link between the equations of waterlines
and frames of a theoretical lines drawing and equations
of the same curves on hull development the following
important property is used: the curvature of the curve
lying in a plane is a simultaneously geodesic curvature.
And as the geodesic curvature at each point on a
surface remains constant in the process of bending, a
line on the development, into which the given curve
changes, should have a curvature which is equal to a
geodesic curvature of this curve. The geodesic
curvature of frames and waterlines of hull with
developable skin can be readily derived as these curves
are given analytically and are plane ones.

Let K. equal the curvature of a curve at the point
M (x, y, z) on the hull surface. Then the geodesic
curvature K, at this point is connected with K. by the

equation
K, =K, cos0 , @8

where @ is the angle between a normal to a plane curve
at the point M (x, y, z), resting in a plane of this curve,
and the tangent plane to a surface, which is passing
through the point M (x, y, z).

The curvature of the curve K, on the development

of this section is equal to a geodesic curvature

K,=K,
or
K, =K.cos0 2)
The curvature K. of the frame given as y =f(z),
" 2
K=yl faeyl 3)

and for waterlines given as y = f (x),

. ) 3/2
Ke=Yxx [1+yx j . 4

For the development a flat system OTP is used with
axes OT and OP. Then the curvature of a curve has the

following form
> 3/2
K,=t,, (1+t J . %)

Hence a differential equation of frames and waterlines
on development is obtained

) 21372
! pp (1+t j =K_.cos@, 6)

where K, and cos @ are functions of coordinates of the
point M(x, y, z). If x is constant, i.e. the problem is solved
for a frame, for the right member of equation (6) the
curvature K, is a function of one coordinate z.

Taking into account that the curve curvature on
development K, is equal to a geodesic curvature K, of

section, it is possible to obtain the differential equation the
solution of which at the given initial conditions is the
required curve:

p =K )1+, ) ™
pp g P :
This equation is integrated by replacing the variable
t;, =u,

then (7) can be written down as
u =K (p)1+u®)'?,

This is an ordinary equation with dividing variables,
which can be transformed to

du
—(1 ) =K, (p)dp.

Integration yields

du
Jm _[K (p)dp +C; .
u

The left integral is derived with the help of
trigonometric substitution

u=tgvu;, du= sec? vdv
and can be written in the form

L —[K(p)dp+C
mj‘ pjap +Lg.

On solving this equation for u, we get
e + [k (prap]

1—[C1 +J.Kg(p)dp]z .

®)

o dt
Taking into account that u =—

, we must integrate
dp

once again

- e+ HJx (p)dp] dp+C, . ©)

t-ley + [ Ko pran




This equation is a general solution to this problem.
In order to obtain an exact relation between coordinates
t and p the integrals must be taken as elementary
functions. However, the function K, (p) included in

integrand expression is so complicated even for the
elementary surfaces that integrals in (9) can be taken
only when the geodesic curvature of the line (boundary)
of a section is constant.

The geodesic curvature is calculated by the formula
(1). In order to define it, it is necessary to determine the
curvature of a given frame (or waterline) and cosine of
the angle between the normal of a frame (or a
waterline) at the point M(x, y, z) and a tangent plane to
the surface in this point. The curvature of the frame is
determined by formulas (3) and that of the waterline —
by (4). Derivation of the cosine of an angle between a
normal and a tangent plane, when the equations of
curves of a developable surface are given in an explicit
form, is shown below.

It will be assumed that two frames on a surface of a
vessel with developable skin are given and their
equations are in an explicit form

=111, ¥y =y2(x).

It is necessary to find coordinates of points of the
given frames on development. The equation of a
surface of a vessel can be written as a system:

y1=y1(z1);
Y2 =y2(22);
Z—Zl _ X—Xl . (10)
Zy— 7 x2_xl,
ylxl :y2x2;

X—X
y=y1+2-n) :

X3 =X

Each point M;(x;, v, z; of the first boundary
section has a corresponding point on the second section
M(x,, 5, z5), where the tangent line at M, is parallel to
the line tangent to the first section at M;. A straight
generatrix passes through these points (Appendix B,
figure 10). The tangent plane passing through the point
M, touches the surface not only at this point, but at all
points of straight generatrix M;M, and at the point M..

To set up an equation of a plane tangent to the
surface at the point M;(x,, y;, z;), it is sufficient to have
two straight lines, belonging to the plane. Such straight
lines are a tangent line to the curve at the point M; and

sin 8=

‘xz =X+ y1 (X2 —x1)‘

the straight generatrix M; M.
The equation of this straight generatrix is

X—% _Y™hn _zZ724 ) (11)
X=X V27XV 2277
and the equation of a tangent straight line is
x—x1:y—Y1:Z—Z1’ (12)

0 y. 1
where y; is equal y; 4 Or y'2x2 , and they are equal to

each other.
For the case when the sought curves on development
are the waterlines given in an explicit form:

yi=x10x) (13)
Y2 =y2(x2),
The equation of a tangent straight line is
x_xl:y_‘ylzz_zl’ (14)

The vector of the a normal N of a tangent plane can be
written as

i j K
N=xa-x1 Y-y z3-7 (15)
0 Y1z 1

If the tangent plane passes through a line tangent to the
waterline in a determinant (15) V'2x, is used instead of

» z; - If a tangent plane is written in a general form

Ax+By+Cz+ D=0 (16)
then the coefficients are calculated by the formulas
A=Yyy =y = Viy (22 = 21);
B= X1 — X2,
an

C =y (x3 —x1);

D=y, (X123 = xp21) + (X201 = X1)2)-
The normal straight line at a frame at the point
M(x;, y;, z;) is given by the equation

X™x _yhn _zTa

O _1 ylZI

; (18)
where n= {0, -1, yl'z1 }

The angle between the normal n of straight line and
tangent plane is given by

2 , 2 5 5
\/1+J’121 \/[yz_yl_ylzl(z2_zl)] +(x3 =x1)7 + 1 (2 —xp)

.2
(x2 =xp\ 1+ y1z

(19

- 2 5 5 5
\/(1+ylzl )Xy =x1)” + 15 (22 —2)7 + (2 = y1)” =21, (V2 = y1)(22 — 21)



Hence, cos @ is determined as

Y2 =Y~ Vi (22 —21)

cos Y= (20)
1 2 2 ' 2 2 1
\/(1+ylzl Mg =x1)" +y1z (22 —20)7 + (2 =17 = 2p1, (2 = y1)(z2 — 21)
Then for the determination of geodesic curvature the resultant expression is as
K =— Yz
£ v 20372
(1 + ylzl )
@n

V2 =1~ Vi (22 —21)‘

X .
ll 2 ll '
\/<1+y121 Yoz =x1)? + 215 (22 =20 + (2 =) =201, (2 = )22 — 21)

The geodesic curvature is a function of the coordinate
Z, at the point of the surface, for which it is determined.

This is due to y, being a function of z;and the coordinates

Y, and z, being dependent on the position of the point
M, (x,,y,,2;) because of a condition y;, = y,,, in

which yl' xl is the function of z;. In changing to the system

of coordinates OTP of development, an independent
variable p corresponds to the coordinate z; .

A construction of the curves with a constant Gaussian
curvature on development will be illustrated by the example
of the direct circular cone (Appendix B, figure 11) with a
foundation of the radius R.

The equation of a cone in this case has the form

xp(z2 +y?)-R*x? =0, (22)
and equation of a circle of the foundation
(2 +y*)=R?

It is required to find the equation of this circle on the
development of a cone. In this case the curvature of a circle
is known and equals 1/R . If the equation does not represent
a circle, or any other curve, the curvature would be
calculated by the formula

Ko Ju

2 3/2°
I+y,

In order to define a geodesic curvature it is necessary to
find cos @ where @is an angle between the radius O;B and
the straight generatrix of the surface OB. In this case the
cosine of the angle is easily determined by the formula

R

\Ix§+R2

Hence the geodesic curvature is equal

1 R 1
Kg=Kcos6’=— =

R\/xZ+R2 \/xZ+R2

where X, and R are constants. Then

cosf =

dp P
[Ke(pdp=] = +Cy.
\/xlf +R? \/xg +R?
If the initial conditions are given as
_ ]2 2, ' _
t|p:0_,/xb +R*; t‘pzo_o,

then C; = 0 and for a given value of f the expression
is obtained

t= [/ + RV dofu-(p/ 3 + BT (23)

from where

t=+x} +R* - p? +C,. (24)

At the given initial conditions the arbitrary constant is
equal to zero too. Then the equation of a circle of a
foundation of a direct circular cone on its development
is formed into the equation

t=ﬂx§+R2—p2

>+ p? =xf +R?, (25)
where p varies from - R up to R. The development of
the cone is shown in a figure 12 (Appendix B).

An exact integration is possible only in exclusive cases
and it is impossible when the surface is represented as a
set of equations. For practical use on the basis of an
exact solution a method of the approximate definition

of coordinates 7, p of a point of development, which
corresponds to a point of a surface M(x,y,z) is

or

developed. This method has been elaborated to
calculate simultaneously, with offset sheet, the
appropriate coordinates of the same point on
development.

The approximate method is applicable to any
surfaces with a zero Gaussian curvature. It is based on
assumption that the Gaussian curvature on an
elementary site of a curve is constant. For higher
calculation accuracy it is necessary to allow for this
circumstance by using the appropriate average of values
of curvature at each elementary portion.

Let equation of a surface be given as a system



fi1(y1,21)=0;

f2(y2,22)=0;

zZ—2Z] _ X=X . (26)
Zp -7 x2_x1,

ylzl :y222;

X —X]

y=y1+W2-y1) .
X2 =X

The first two equations define in an implicit form
the boundary lines of a developable surface segment. If
they are the equations of the frames given in the form
of transformed versiera or any other curve, the
coefficients of these equations are given as arrays of 4i
and Bi (i =1, 2, 3, ...10). (The transformed versiera has
been developed by the author and was described in the
book by A. Gotman, [1979]).

The solution of this system (26) gives ordinates y of
any surface point in a system of a vessel OXYZ. In the
course of solving this system all data for the
development construction can be obtained as well as the

coordinates of the point M (¢, p) on development for

the appropriate point M (X, ¥, z) on the surface.

Figure 13 (Appendix B) shows construction of a
part of development M; M, ;1) Mo+ 1) M>;. According to
the accepted assumption the parts of frames x; and x,
are substituted by arcs of circles.

Let the first and second equations of system (26) be
given by the equations of frames

3,2 2
Fi=41y] +yi (Ayzy + A3) + y1(Aazi +
+ A5z +A6)+A7213 +A8212 + Agzy + 41y =0;

27
3.2 2
Fy =Byy5 +y5(Byzy + B3)+yy(Byzy +

+BsZz +B6)+B7Zg +BBZ% +B922 +Blo =0.
In the course of the determination of ordinates ),

of the second frame the coordinates ); and z; of the

point are determined on the first frame through which
the appropriate straight generatrix passes. For
construction of development the values of geodesic

curvature K 21 and K o by the formula (21) in each
of these points are simultaneously determined.
In order to determinate geodesic curvature K g it is

necessary to know values of first and second derivatives
at these points. As the equations of frames are given in
an implicit form, the derivatives are determined by the
formulas

dz | - Fl'yl ’

d Fy.

ﬁz_ﬁ; (28)
d”*y, _ Flﬂ)llelzl Flﬂzllel)l

@z (7)), ) |

dz)’z _ F2"yzzz lezz - F2"zzzz leyz

@z (s, f |

At the same time the differences are determined

Ax =x, — X,
Ay =y, =y, (29)

and the length L of a straight generatrix between the
points M and M, is found by the formula

L:\/sz + Ay +AZ2. (30)

The angle « is determined as an angle between
vectors of a tangent line and straight generatrix passing
through the point M

The vector of a tangent line is equal to

K=y, i+k 31)
and the vector of the straight generatrix has the form
L=(xy—x))i+(y2—yi+(z2 -2k (32)

The angle o is determined by the formula
1
a = arccos(———=x
V 1 + ylZ]
(22 =20 + Y1, (2 = ¥1)

X .
2 2 2
\/(xz =x1)"+ (2 =y + (22— 27)
The calculation of coordinates of points M and

(33)

M, is performed from the basic plane up to the deck.

Thus z; varies at equal intervals Az, and Az, is

determined from the parallelism of tangent lines at the
points M; and M, which results in the intervals

Az, being different. For the development construction

it is necessary to know length of arcs of frames between
the neighbor points. The points are designated
Mll’M129M13’""Mli9M1i+1""'M1n stand for the

points on the first frame;
M21 . M22 N M23, ....le-, M2i+l . ....M2n are the pOil’ltS

on the second frame.

As the frames are in an implicit form, their length
can not be obtained by integration, therefore lengths of
arcs should be determined as length of an inscribed
polygonal line. For this purpose, the distance between
two neighboring points on each frame is divided in
direction of the axis OZ into ten equal parts. Then

length of an arc between points M,; and M, is
determined by the formula

10
S =Y 6n), > +(62), (34)

n=l1

where
GYDn=Yntl=V1n

Sz, = itl "2l
10
At each point of the division of frames between M,

and M, for z; = z,; +no z;, where n =1, 2, 3, ...
10, the ordinates y; are determined by the equation of

a frame from which O y; are calculated.



The lengths of arcs of the second frame are
calculated in a similar way.

10 .
Sai ZZ\/(5y2)n +(62,), (35)
n=1

Gy)dn=Yope1~Y2ns

5z, = 22i+l T 220
10
The angle ¢, is determined as the product of the

length of an arc on a curvature with the formulas

P = S1iK g

36
P2 =82 K G0

g2i>
where K, and K,, —stand for the curvature at the

points M;; and M ,; respectively (Appendix B, figure
13), and S;; and S,;—designate the length of arcs
between the points M; — My;,; and Moy, — My, .

The development is constructed in a OTP system. In
this system, the frames can conveniently be arranged at
the same distance from the middle as in a theoretical
line drawing. The base line of the hull should coincide
with a coordinate line OP. Then the flat part of the
bottom will naturally be combined with the plane of
development. The first straight generatrix, for which the
coordinates of points M, and M,in the system of
development OTP M (py,t;) and M,(p,,t,)are
determined, should belong to a flat part of the bottom.
From it the counting of coordinates of points of frames
begins. The position of the first straight generatrix on
development corresponds to the initial conditions,
which should be given in the process of solution of a
differential equation.

For translation of coordinates of points into the
system OTP it is necessary to precisely determine the
angle of declination ¢, of the first straight generatrix to
the base line. The same angle this straight generatrix
makes with the coordinate axis of development OP.

From figure 14 (Appendix B) it is clear that if
MM, is the first straight generatrix, the coordinates

of points M and M, on development are determined

as follows. Let X; be the abscissa of the first boundary

frame and x, be the abscissa of the second boundary
frame. Then in the frame O;7}P;, at which the first

straight generatrix serves as an axis O;P the

coordinates of the point M are equal to:

1 1
pr=x;; 4 =0, (37
and the coordinate of the point M,
phy=x +L; th=0, (38)

where L, is the length of the first straight generator.

The coordinates of the following points of the
first and second boundary frames are determined as a

projection on the axes O, F and O, by the formulas

R;

l~2+1+1 \/Kl-2+1
RiKiy  RK;

Jk2 e ke

where K; and K., are the angular coefficients of

R.

1

1 1
Piv1 = Pi
\/K

(39

1 1
livp =4 +

radiuses of a curvature Rl. in relation to the first

straight generatrix. They are determined by the
formulas

i
T
K; = fg[% +E+Z€0n}

n=1

i+l
T
Kin = tg[% ot D oy ]

n=1

(40)

The translation of coordinates into the system OTP
(Appendix B, figure 14) is performed by the formulas
pi =D, + p} cosa, +t,-1 sina,,; @1
t; =t, —pl-1 sine,, + til cosa,,
where @, is the angle between axis O;P; and OP.
On calculating the coordinates of points of frames

on development from all angles «; only ¢;, and from
lengths of the straight generatrices M ;M ,; - only L; is
used, therefore all following values L; are applied to
check of an exactness of a construction of development.
As the control magnitude it is convenient to use a
distance between the appropriate points M;; and M,;,
which is equal to

AL =L (ol - p3)? + el —ih)?. @)
The exactness of a construction of development
depends on an amount of points which the frame is
divided, and consequently, the more calculated points
are taken, the greater accuracy of a construction is
attained.. The numbers of calculated points are defined
by a computer.
Figure 15 (Appendix B) shows the frames with

abscissas X; and X, which are basic for the given

extremity. The coordinates of straight generatrices of
the extremity located on the first frame at equal height
intervals are computer-generated. All intermediate
practical and theoretical frames are obtained by the
proportional division of distances between ends of the
straight generatrices.

Using the above-mentioned algorithm one can
obtain the coordinates of ends of straight generatrices
on a development and to plot them on a drawing as a
grid for a construction of the frames and waterlines
(Appendix B, figurel6). The coordinates of points of
diametrical buttock, theoretical or practical frames, and
waterlines, which are calculated on the computer, are
also plotted on a drawing. By the method of
proportional division, the points of a frame will hit an
available grid of straight generatrices of surface made
beforehand. Figure 16 shows z, of a waterline, x; of a
frame, and also diametrical buttock by way of example.



For the computer-aided determination of coordinates p

and 7 of a point with the given values X, ), z, belonging
to the surface of the hull, it is necessary to define the
coordinates ends of a straight generatrix, which passes
through this point on the hull, and consequently, and on
development. On the hull, the ends of straight
generatrices are the points M;(x;,yy,z;) and

M5 (x5,¥,,25) with the first point lying on the first

basic frame, and second - on the second one.
On defining the coordinates of any point M (p,?) on

the development two methods can be used. The first
method consists in the definition of coordinates p;;

and p,t,by the above-shown algorithm, ie. in a

sequential construction of points of basic frames on
development from initial straight generatrix up to
required one. The second method is easier. It is based
on using an available grid of development consisting of
frames and straight generatrices. On such a
development near the numbers of points on ends of
straight generatrices it is necessary to write down the
coordinates, appropriate to them, X, ),z of the hull.

Then, it is possible to find the position of a point on
development by interpolating after the coordinate of
ends of straight generatrix passing through this point
has been determined for the given point of a.

For example, on development (Appendix B, figure
18) it is necessary to find a point of the hull with
coordinates M(x, y, z), through which straight generatrix
passes with ends in points M;(x;, y;, z;) and Ms(x;, y,,
z;).. This generatrix passes between 11 and 12 straight
generatrices on development. The definition of a
position of this straight generatrix is shown on the
following example.

Let the point M has coordinates (9.8,0.18,0.5), and

coordinates of ends of the straight generatrix through it
be M/(10,.075,.47)and M, (8,1.115,8.25) . The appropriate

coordinates of the ends of eleventh straight generatrix
Mi(lO, 066, .45) and M'2(8,1.108, .8), and coordinate of

ends of twelfth straight generatrix Mf(lo, .085,.5) and

My(8,1.125,.844). The coordinates of points

My, My, M{,M5 on development are computer -
generated and are equal respectively to A (10.076, .296) ,

M5 (8.13,1.49), M (10.089, .348), and M (10.089, 348).

To define a position of a straight generatrix,
passing through the given point on development, it is
possible to employ the following formulas.

Let Mq(py.t;) correspond to an end of the

generatrix on the first frame x;, and M, (p;.17) - to the
end of the generatrix on a frame x,. Then the

coordinates of these points are connected to coordinates
of the neighbor generatrix by the formulas

Z1— 21

pr=pri+(p1—-pP)—;
zZ] -2
' " " Z1 =2
h=t1+ —H)—;
Zl_zl (43)
1 " ' 22—22 .
P2 =pr+(p2y—pr)——;
Zy -2y
i " " Zy =2y
ty =ty +(ty —t)) =
Zp =2

After the definition of coordinates pit;, p, t; it is
easy to find p and ¢ of the required point M(x, y,z)
using the formulas

X=X .
p=p1+(p2—p1)——;
Xy —X1
X—X
t=t; +(ty —1]) ——.
X2 =X

For the example of figure 16 (Appendix B), p; =
10.082. For the point M coordinates on development are
determined by the formulas (43) and equal p = 9.887, ¢
= .441. The point M (p, t) is shown in figure 16. It is
located on generatrix (shown as a dashed line), the ends
of which are at the points M (p;,t)and M, (py,t7).

As this example demonstrates, if it is required to find an
intermediate point on ready development it is necessary
to find the coordinates by the above-presented
formulas. On a development drawing it is sufficient to
show the coordinates of points in common OXYZ
system instead of numbering them. The coordinates p
and ¢ are derived from a drawing of development with
the help of scales on axes OP and OT.

The development, which is shown in a figure 16
(Appendix B) is constructed with the help of calculated
coordinates. The table containing the coordinates of
points on development simultaneously includes
coordinates of the same points in a system OXYZ of the
ship. In each row the coordinates x, y, z p, t are
specified. In the same row it is possible for convenience
to specify the same coordinates in a scale of a line
drawing. The table contains data on practical and
theoretical frames. With such a table, it is easy to
construct development with drawing of frames,
waterlines, lines of a deck and diametrical line, and also
straight generatrices of the surfaces of the hull.

The obtained algorithm can be used for the
development of any sheet construction which may or
may not be connected to the hull of a vessel.

Note: to obtain development of a surface it is
necessary for the basic curves to be given by such
expressions, so that the second derivative happens
should be smooth. Any jump of the second derivative
will be expressed by a rupture of curves in
development.



CONCLUSION

The paper describes the method of constructing a lines drawing of vessels from developable surfaces. This technique
is simple and can be applied both computer-aided and manually. It can be successfully used both by large ship-
building firms, and amateurs. A method for designing shapes for different ships with the developable skin with no loss
of hydrodynamic performance is also offered. Comparative towing tests of traditionally shaped ship models from
developable surfaces of different vessel types have shown that any ship hull can be projected from developable
surfaces up to 95 — 97 %. There is also a practical method for computer-aided constructing the development of the

ship hull skin.

The detailed description of designing ship hull shapes from developable surfaces is given in the monograph by the

author (Gotman, 1979)
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APPENDIX A. FIGURES TO CONSTRACTING A LINES DRAWING

Figure 1. Polyparametrical

developable surface Figure 2. Cuts of polyparametrical
developable surfaces by parallel
planes
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Figure 3. The construction of ship hull shapes
from developable surfaces.

Figure 4. Formation of ship shapes from developable surfaces. a) — the hull shapes with a
middle body; b) - the hull shapes without a middle body.
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Figure 5. The afterbody and forebody of ship with a bow bulb

kull shapes of the initial form,
————— hull shapes from developable surfaces
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Figure 6. Hull shapes of a river vessel such as "«Rodina" and the comparative resistance curves of
these variants of hull shapes a) — initial variant with usual shapes; b) — shapes with developable
skin; ¢) —“simplified” hull shapes. The upper curve is the resistance of variant c; the lower
curve is resistance of variant b; the middle curve is resistance of variant a
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Figure 7 The hull shapes of R69
a) hull shapes with developable skin
(variant 1)
b) hull shapes with developable skin
(variant 2)
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(variant 3)

4
3
18 7
2 e /L
1l L V7
5 Tom—— 10076 |72
II I c.k.

Figure 8. The corﬁparison of the hull shapes of

R69 with  the hull shapes of variant 2 from
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Figure 9. The comparison of

resistance curves

1. — of the usual shapes of R69
2. — of the variant 1;
3. — of the variant 2;
4. — of the variant 3.
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APPENDIX B. FIGURES TO CONSTRUCTION OF THE DEVELOPMENT OF SHIP HULL SKIN
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Figure 10. Normal to a frame n and a
tangent plane with normal to it N.

Figure 11. Development of the direct circular cone.
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Figure 16. Position of the straight generatrices of the hull surface



