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The graphic method of constructing lines drawing of hull with developable skin is described. This method is 
simple and does not require cumbersome constructions and nor does go beyond the limits of lines drawing.  The 
algorithm of analytical construction of development of a hull skin also is described.  

Evident technological advantages of the ship hull with developable skin brought about the formation of, so-
called, “simplified” shapes when the whole ship hull is designed from developable surfaces and therefore necessarily 
has a sharp chine. A distinguishing feature of the suggested method for designing a ship hull described here is that it 
allows to create well-streamlined shapes without any sharp chine and consequently without loss in hydrodynamic 
quality. Comparison towing tank tests has confirmed this possibility.  

Using computer programs the coordinates of hull and the development are produced simultaneously in two 
Cartesian systems: the ordinates of a lines drawing are given in a space system, and ordinates of frames and 
waterlines on development of skin are presented in plate. The review and detailed description of different methods 
for construction and design of ship shapes are given in the monograph of the author (Gotman 1979). Solutions 
necessary for computer-aided construction of lines drawing and of development of skin at the stages of design and 
the preparation for the production of the mould-loft are given. The examples of shapes of different kinds of ships 
from developable surfaces are given too. This paper acquaints the reader with a method of design suggested in the 
monograph. 

. 
1. INTRODUCTION 

 
 The ship hull with developable skin has the 

following advantages over usual forms: the 
construction and coordination of lines drawing 
becomes simpler; the elaboration of computer programs 
is facilitated; the production of the mould-loft is 
simplified; the process equipment of hull shop becomes 
simpler by the unification of tools for building; the 
quality of skin is improved and the repair of the hull is 
easier; the skin production becomes less labor-
consuming, since no beating or heating for curving the 
metal sheets is required. 

Much less computer resources will be necessary for 
deriving information about a buoyancy, stability and 
seakeeping of a ship, and also for preparation for the 
production of the mould-loft than for the conventional 
ship hulls. Volumes of initial data decrease because 
only the base frames (or waterlines) are included, and 
on their basis all the remaining ordinates of hull are 
obtained. In addition no special program for the 
coordination of lines drawing is required, since the 
surface itself rather than the routine carcass of the 
waterlines and the frames is constructed. There is no 
necessity to analyze or describe each plate of skin on 
the mould-loft because all plates have to lie on the hull 
framework by means of curving. Therefore, instead of a 
skin expansion the exact development of skin is 
produced.  

The hull shapes with developable skin can be 
described analytically (see formula 10) thus making it 

possible to use them for hydrodynamic research. We have 
used them to study the effect of a distribution of inner 
curvature of hull surface on the wave resistance and on 
the friction resistance of a ship.  

The above-listed advantages from time to time give 
rise to new methods for constructing lines drawing with 
developable skin. However, the authors of the new works 
are often poorly acquainted with existing solutions.  This 
may be attributed to the lack of good reviews with 
complete bibliographies and descriptions of existing 
results. Perhaps the reason for this is that the description of 
developable surfaces is presented in mathematical journals 
and their practical applications are scattering over the 
special magazines for different industries. To make up for 
this deficiency, a brief bibliography of constructing lines 
drawing from developable surfaces methods is given in the 
end of this paper. 

There is a wealth of experience accumulated of 
building simplified ship hull designed from developable 
surfaces.  The fish ships with a skin from conic surfaces 
were under building (Hutch 1964). Trade vessels with 
fully developable hull skin are under construction on 
Burmeister & Wain Shipyard in Denmark  (Norskov-
Lauritsen  [1985]).  There is a long history of high-speed 
boats with similar construction (Krisov  1935,  Kilgor 
1967, Nolan 1971, Clements 1981, 1984, Trincas & 
Grubisic. 1981). Many years ago a method of constructing 
lines drawing and designing of river vessel hulls from the 
surface with a rib return (or the tangent developable 
surface) was worked out in Russia. Middle body of these 
vessels has a sharp chine and the ends are well-streamlined 
(Pavlenko 1948, Pjatezkii 1960, 1962, 1963, 1965). 
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The review of recently developed methods of 
designing of ship shapes from developable surfaces is 
given in the paper of Chalfant & Maekawa (1998) then 
their description is not given here.  

There are some works devoted to the methods for 
applying developable surfaces not to ship hulls but to 
other sheet construction, for example, to aircraft wing 
or different tubes (Bodduluri.& Ravani 1992, 1993, 
Gurunathan & Dhande 1987, Weiβ  & Furtner 1988, 
Dhande & Ramulu 1984).  

Unlike the method developed by the author of this 
paper, all other methods are too complicated for 
engineering use. In all last methods, except the works 
of Aumann, the spatial curves are taken as basic lines, 
which are difficult to obtain analytically. The 
distinguishing feature of the suggested method is that 
either frames or waterlines are assumed as the basic 
curves. The sharp chine and deck line are produced 
simply as lines of intersection of two surfaces as the 
bottom, side and deck cover. Aumenn uses the same 
idea, as author of this paper, but the method of the 
author was registered in the bulletin of the inventions 
more than the forty years ago (Gotman  1960).  

Many kinds of ship hull shapes have been worked 
out to obtain the method of shapes design from 
developable surfaces. It turns out that it is possible to 
receive the shapes of ship hull without any sharp chine 
and, therefore, without any losses of hydrodynamic 
quality provided that 5 % of the skin of a vessel 
remains not developable. In developing computer 
programs for design and for technological preparation 
of production an analytical model of ship hull with the 
developable skin was obtained and a mathematical 
problem of deriving the development of a skin was 
solved for the first time (Gotman 1975).   

 
1. THE METHOD OF CONSTRUCTION OF LINES 
     DRAWING 

 
Gaspard  Monge (1746 – 1815) was the first one to 

describe the developable surfaces in his “Application 
de l’analyse  a la géométrie”  (1805). Monge defined 
developable surfaces as follows: «A developable 
surface is called the surface possessing of such property 
that, presumed it’s flexible and inextensible, we can, 
having bent such surface, to impose it on a plane, to 
which it will adjoin then by all of its points without 
stretching or tearing». He has also recognized three 
types of developable surfaces: cylinder, cone and 
surface of tangents to a double curvature curve (surface 
with the rib of return or tangent developable surface), 
using to this day.  

Developable surfaces are zero Gaussian curvature 
surfaces. Conclusions can be drawn from Gaussian 
curvature being zero: 1) there is a single straight line 
belonging to this surface that passes through each point 
of the surface; 2) a tangent plane passing along each 
straight generatrix of the surface remains invariable 
(Gotman 1979). 

In order to save the Gaussian curvature being equal to 
zero, does not request any definite locations of its singular 
points kind of the cone top. Therefore, a developable 
surface can be treated as a surface with arbitrary 
arrangement of singular points. These surfaces we have 
named as p o l y p a r a m e t r i c a l  d e v e l o p a b l e 
surfaces (Appendix A, figure 1). The conical, cylindrical 
and the surfaces of tangential lines are the particular cases 
of polyparametrical surfaces.  

The inherent particularity of polyparametrical surfaces 
is that any two infinite close located straight generatrices 
may be either crossing or parallel ones. Just this 
particularity leads to the tangent plane being invariable 
along any straight generatrix of the surface. The double-
curved surfaces have no such properties.  

The polyparametrical surfaces provide much greater 
possibility of designing different ship hull forms because 
there are no restrictions encountered by a designer using 
cylindrical, conic or surfaces of the rib of return. Using 
polyparametric surfaces for constructing lines drawing is a 
much simpler method. Unlike all known methods of 
hydroconic ship forms constructing, this method does not 
require any additional constructions beyond net of lines 
drawing for finding straight generatrices.   (Hatch 1964, 
Kilgore 1967, Pavlenko 1948 et all). For example, when 
the only cone surfaces are used it is necessary to search the 
top of every cone outside the lines drawing net that leads 
to restriction of the vessel size (Hatch 1964). 

The positions of straight generatrices are determined 
by a very simple consideration. Frames, waterlines, and 
buttocks planes intersect the tangent plane to the surface at 
parallel straight lines. Thus, the lines tangent to any frames 
(buttocks and waterlines) ought to be parallel to each other 
at the points of intersection with generatrix because all 
these lines of tangency are lying on one and the same 
tangent plane and at the same time they may be considered 
as the lines of intersection of the tangent plane with a 
system of the parallel planes (Appendix A, figure 2). The 
method of construction is based on this property. If the 
tangent lines resting on one generatrix are not parallel to 
each other it means that the surface is not developable.  

Usually, the construction of a lines drawing is carried 
out using the sectional area curve. First, the sections of 
frames with the given area are plotted and then the 
coordination of the hull surface is performed. The initial 
data employed for conventional ship form designing, 
except the sectional area curve, include the load waterline 
and its center of gravity, the side deck line, the line of 
sharp chine (if there is one), the line of bottom, and the V-
shaped or U-shaped frame forms. All these characteristics 
have some minor changes when one constructs a lines 
drawing from developable surfaces.  

The construction of the lines drawing may be done on 
the only in a single projection. The remaining projections 
are coordinated as well. The method of construction of the 
bow end of ship with developable skin by the generatrices 
is shown in Figure 3 (Appendix A).  

 Thus, the suggested method of constructing lines 
drawing differs in the coordination of hull surface being 
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carried out by straight generatrices rather than by lines 
drawing net. The points of frames intersection with the 
net of drawing are used for verification and for drawing 
waterlines and buttocks 

 
3. DESIGN OF THE WELL-STREAMLINED SHIP 
HULL SHAPES FROM DEVELOPABLE 
SURFACES 

 
 The method of ship shapes designing from 

developable surfaces is based on the evident statement: 
it is impossible to create the ship hull from one sheet of 
surface, but if to left 3 – 5 % of hull surface be not 
developable in the places of going from the ship ends 
to the middle body, it is possible to design any well-
streamlined hull shapes without sacrifice of 
hydrodynamic quality. On designing the hull it is 
necessary only to save its subdivision into bow, a stern 
part, and a cylindrical middle body (Appendix A, 
figure 4).  

On working out the method of well-streamlined 
hydroconic ship shapes we had to examine what hull 
form parameters underwent the greatest changes. For 
this purpose, different kinds of hull shapes with 
developable skin were drawn and analyzed (see figures 
5 and 6, Appendix A). 

This analysis shows that the sectional area curve at 
the hull ends has insignificant changes. The 
comparative towing tank tests shows that such changes 
in this curve do not influence the ship resistance.  

When the hull shapes are designed from 
developable surfaces, the distribution of curvature is 
changing along the length and draft of a ship. The 
distribution of curvature was studied for different kinds 
of analytically represented ship forms. Various ship 
curves of Arzeulov, Popov, Chapman and so on were 
used for this investigation. As it turns out, even the 
very smooth hull shapes have the distribution of the 
curvature, which is not subject to any quantity and sign 
regularities. Then the requirement of the Gaussian 
curvature equality to zero is not a great restriction.  

However, if we desire to make the whole end of 
hull from developable surfaces it is impossible to 
preserve S-shaped waterlines of the ship bow. 
Nonetheless, the towing tank tests showed that S-
shaped waterlines can be substituted for straight ones 
without any loss in hydrodynamic quality.  

         To verify a hydrodynamic quality of different 
kinds of hydroconic ship hull with developable skin, 
comparative towing tank tests were carried out.  Well-
streamlines ship models with low resistance were 
chosen as prototypes (Appendix A, figures 5 - 9). The 
comparative towing tank of the cargo- and passenger 
catamarans, river vessels “Rodina” and “Sevan”, and a 
high-speed shallow-draft river vessel were carried out. 
Figure 5 illustrates the possibility to design a hull 
shape of marine ship with a bow bulb and a tunnel 
stern from developable surfaces. The river vessel 
"Sevan" has hull shapes of the same type as "Rodina", 

the results of towing tank tests of these vessels are similar 
too, and therefore, they are not shown in this paper. 
It should be noted that it is necessary to shift the positions 
of the center of buoyancy and center of load waterline but 
no more than by  0.5%.  

The models of river vessels “Rodina” and “Sevan” had 
short cylindrical middle body, V-shaped   frames and S-
shaped waterlines. The cylindrical middle body of the 
model with developable skin was made a little longer, the 
waterlines were made straight or slightly convex, the 
frames retained the V-shaped or U-shaped frame forms. 
The non-developable transitional parts of hull surface 
remained in the regions of 6-8 and 13-14 theoretical 
sections. The resistance of the hull shapes with 
developable skin is the same as of initial ship forms. 

Hull forms of the catamarans taken for the comparison 
had no cylindrical middle body but had S-shaped 
waterlines and V-shaped frames. The hull variants of 
catamarans from developable surfaces had no S-shaped 
waterlines, but all principal peculiarities of form were 
preserved. It should be noted that the achievement of high 
hydrodynamic quality of catamarans is more complicated 
than that for single-hull ships because even small changes 
in the forms of catamaran lead to the essential changes in 
the residual resistance. Nevertheless, the hull shapes of 
catamarans with developable skin had the same resistance 
as the initial ones.  

Three variants of river vessel “Rodina”-type with the 
project velocity Fn = 0.22 are shown in Figure 6. The 
upper variant a is the usual shapes of vessel “Rodina”. 
The variant b is the well-streamlined shapes of this vessel 
from developable surfaces; the variant c is the hull with 
developable skin, which has a sharp chine. The 
comparative towing tests show that the resistance of 
variant b is less than one of variant a; and variant with a 
sharp chine has the greater resistance than others. These 
tests were carried out to show the unacceptability of 
“simplified” shapes for commercial vessels. There is little 
point in having a small profit in ship hull building to lose 
velocity in each trip.    

Three hull shapes variants of the high-speed river 
shallow-draft vessel R69 with developable skin are shown 
in figure 7. The changes in frames sufficient for the 
surface of a hull to be developable are shown in Figure 8. 
Figure 9 shows the results of comparative towing tank 
tests (Appendix A). The second variant of hull with 
developable skin has the same coefficient of residual 
resistance as the usual one. The third variant with almost 
straight frames has the greatest residual resistance. The 
first variant has the greater resistance than the second 
variant due to the larger entrance angle of bow waterlines, 
but its resistance is lower than for the third variant.  

In conclusion it should be noted that it is easy to 
obtain the whole well streamlined hull shapes providing if 
small parts of hull surfaces are left not developable. The 
stern tunnels, bow bulbs and well-flared bow represent the 
most labor-consuming forms and they require a great 
experience in designing ship hull shapes with developable 
skin, but, nevertheless, it is possible.  
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4. COMPUTER-AIDED CONSTRUCTION OF 

THE DEVELOPMENT OF SHIP HULL SKIN 
 
Although developable surfaces can be unrolled 

isometrically onto a plane without stretching or tearing, 
it is not simple to find the position of waterlines and 
frames of the ship’s hull with developable skin on the 
development plane. The problem consists in the 
transferal of the equations of waterlines and frames 
from the theoretical lines drawing onto the hull skin 
development. The theoretical solution to this problem is 
to use invariants of a bending of surfaces, which are the 
Gaussian curvature, geodesic curvature, the lengths of 
arcs, and angles between curves lying in the surface. To 
obtain the solution of this problem on the computer the 
analytical expression of a ship hull surface with 
developable skin is used. 

To define a link between the equations of waterlines 
and frames of a theoretical lines drawing and equations 
of the same curves on hull development the following 
important property is used: the curvature of the curve 
lying in a plane is a simultaneously geodesic curvature. 
And as the geodesic curvature at each point on a 
surface remains constant in the process of bending, a 
line on the development, into which the given curve 
changes, should have a curvature which is equal to a 
geodesic curvature of this curve. The geodesic 
curvature of frames and waterlines of hull with 
developable skin can be readily derived as these curves 
are given analytically and are plane ones.  

Let cK  equal the curvature of a curve at the point 

М (x, y, z) on the hull surface. Then the geodesic 
curvature Kg at this point is connected with cK  by the 

equation 
    coscg KK   ,                            (1) 

 
where   is the angle between a normal to a plane curve 
at the point М (x, y, z), resting in a plane of this curve, 
and the tangent plane to a surface, which is passing 
through the point М (x, y, z).  

The curvature of the curve pK on the development 

of this section is equal to a geodesic curvature 
   gp KK   

or    
  coscp KK                    (2) 

The curvature cK  of the frame given as  y = f (z), 

,)1( 2/32'"
zzzc yyK                         (3) 

and for waterlines given as y = f (x), 

.1
2/32'" 






  xxxc yyK                   (4) 

For the development a flat system ОТР is used with 
axes OT and ОР. Then the curvature of a curve has the 
following form 

    .1
2/32'" 






  pppp ttK                  (5) 

Hence a differential equation of frames and waterlines 
on development is obtained    

      ,cos1
2/32'" cppp Ktt 






                   (6) 

where cK  and cos are functions of coordinates of the 

point М(x, y, z). If x is constant, i.e. the problem is solved 
for a frame, for the right member of equation (6) the 
curvature cK  is a function of one coordinate z. 

Taking into account that the curve curvature on 
development pK  is equal to a geodesic curvature gK of 

section, it is possible to obtain the differential equation the 
solution of which at the given initial conditions is the 
required curve:  

.)1)(( 2/32'"
pgpp tpKt                       (7) 

This equation is integrated by replacing the variable  

                
,' ut p   

then (7) can be written down as  

  .)1)(( 2/32' upKu g     

This is an ordinary equation with dividing variables, 
which can be transformed to 

 .)(
)1( 2/32

dppK
u

du
g


 

Integration yields 

.)(
)1(

12/32
CdppK

u

du
g 

   

The left integral is derived with the help of 
trigonometric substitution 

  ddutgu 2sec;   

and can be written in the form 

 .)(
1

1
2  


CdppK

u

u
g  

On solving this equation for u, we get       

       
 
 

.
)(1

)(

2
1

2
1








dppKC

dppKC
u

g

g
                         (8) 

Taking into account that ,
dp

dt
u   we must integrate 

once again 

 
 


 



 .

)(1

)(
22

1

2
1

Cdp
dppKC

dppKC
t

g

g
            (9) 
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This equation is a general solution to this problem. 
In order to obtain an exact relation between coordinates 
t and p the integrals must be taken as elementary 
functions.  However, the function )( pK g  included in 

integrand expression is so complicated even for the 
elementary surfaces that integrals in (9) can be taken 
only when the geodesic curvature of the line (boundary) 
of a section is constant.  

The geodesic curvature is calculated by the formula 
(1). In order to define it, it is necessary to determine the 
curvature of a given frame (or waterline) and cosine of 
the angle between the normal of a frame (or a 
waterline) at the point М(x, y, z) and a tangent plane to 
the surface in this point. The curvature of the frame is 
determined by formulas (3) and that of the waterline – 
by (4). Derivation of the cosine of an angle between a 
normal and a tangent plane, when the equations of 
curves of a developable surface are given in an explicit 
form, is shown below. 

It will be assumed that two frames on a surface of a 
vessel with developable skin are given and their 
equations are in an explicit form  

).(),( 222111 xyyxyy   

It is necessary to find coordinates of points of the 
given frames on development. The equation of a 
surface of a vessel can be written as a system: 

.)(

;

;

);(zy  y

);(zy  y

12

1
121

'
2

'
1

12

1

12

1

222

111

21

xx

xx
yyyy

yy

xx

xx

zz

zz

xx

















          (10) 

Each point M1(x1, y1, z1) of the first boundary 
section has a corresponding point on the second section 
M2(x2, y2, z2), where the tangent line at M2 is parallel to 
the line tangent to the first section at M1. A straight 
generatrix passes through these points (Appendix B, 
figure 10). The tangent plane passing through the point 
М1 touches the surface not only at this point, but at all 
points of straight generatrix М1М2 and at the point М2.  

To set up an equation of a plane tangent to the 
surface at the point M1(x1, y1, z1), it is sufficient to have 
two straight lines, belonging to the plane. Such straight 
lines are a tangent line to the curve at the point М1 and 

the straight generatrix М1 М2. 
The equation of this straight generatrix is  

        ,
12

1

12

1

12

1

zz

zz

yy

yy

xx

xx












               (11) 

and the equation of a tangent straight line is    

,
10

1
'

11 zz

y

yyxx

z








               (12) 

where '
zy  is equal '

11zy  or '
22xy , and they are equal to 

each other. 
For the case when the sought curves on development 

are the waterlines given in an explicit form: 

   
),(

);(

222

111

xyy

xyy




                 (13) 

The equation of a tangent straight line is  

,
01

1
'

11 zz

y

yyxx

x








                            (14) 

The vector of the a normal N of a tangent plane can be 
written as  

 N 

10 '
1

121212

zy

zzyyxx 
kji

               (15) 

If the tangent plane passes through a line tangent to the 
waterline in a determinant (15) 

22' xy  is used instead of 

11' zy . If a tangent plane is written in a general form 

0 DCzByAx                               (16) 

then the coefficients are calculated by the formulas 






















).()(

);(

;

);(

21121221
'
1

12
'
1

21

12
'
112

1

1

1

yxyxzxzxyD

xxyC

xxB

zzyyyA

z

z

z

             (17) 

The   normal   straight   line   at   a   frame at  the  point   
M1(x1, y1, z1) is given by the equation 

              ,
10 '

1

111

1z
y

zzyyxx 








                        (18) 

where  n  .,1,0 '
1 1z

y  

The angle between the normal n of straight line and 
tangent plane is given by 

 
 

 
 
 
                   

(19) 

 

.

))((2)()())(1(

1)(

)()()(1

)(
sin

1212
'
1

2
12

2
12

'
1

2
12

2'
1

2'
112

2
12

'
1

2
12

2
12

'
112

2'
1

12
'
112

111

1

111

1

zzyyyyyzzyxxy

yxx

xxyxxzzyyyy

xxyxx

zzz

z

zzz

z













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The geodesic curvature is a function of the coordinate 

1z  at the point of the surface, for which it is determined. 

This is due to y1 being a function of 1z and the coordinates 

2y  and 2z  being dependent on the position of the point 

),,( 1111 zyxM  because of a condition '
22

'
11 xx yy  in 

which '
11xy  is the function of 1z . In changing to the system 

of coordinates ОТР of development, an independent 

variable p corresponds to the coordinate  1z  . 

A construction of the curves with a constant Gaussian 
curvature on development will be illustrated by the example 
of the direct circular cone (Appendix B, figure 11) with a 
foundation of the radius R. 

The equation of a cone in this case has the form 

,0)( 2222  xRyzxb                  (22) 
and equation of a circle of the foundation 

 222 )( Ryz   

It is required to find the equation of this circle on the 
development of a cone. In this case the curvature of a circle 
is known and equals  R1 . If the equation does not represent 

a circle, or any other curve, the curvature would be 
calculated by the formula  

.

1
2/32'

"







 



x

xx

y

y
K  

In order to define a geodesic curvature it is necessary to 
find cos where  is an angle between the radius О1В and 
the straight generatrix of the surface ОВ. In this case the 
cosine of the angle is easily determined by the formula  

.cos
22 Rx

R

b 
  

Hence the geodesic curvature is equal 

,
11

cos
2222 RxRx

R

R
KK

bb

g





   

where bx  and R are constants. Then  

.)( 1
2222

C
Rx

p

Rx

dp
dppK

bb

g 





   

If the initial conditions are given as  

,0;
0

'22
0


 pbp

tRxt  

then 01 C  and for a given value of  t the expression 

is obtained  

  ])(1[)( 222222 RxpdpRxpt bb      (23) 

from where 

 .2
222 CpRxt b                                    (24) 

At the given initial conditions the arbitrary constant is 
equal to zero too. Then the equation of a circle of a 
foundation of a direct circular cone on its development 
is formed into the equation 

222 pRxt b        

or 

,2222 Rxpt b                                 (25) 

where р varies from - R up to R. The development of 
the cone is shown in a figure 12 (Appendix B). 
An exact integration is possible only in exclusive cases 
and it is impossible when the surface is represented as a 
set of equations.  For practical use on the basis of an 
exact solution a method of the approximate definition 
of coordinates t, p of a point of development, which 
corresponds to a point of a surface ),,( zyxM  is 

developed. This method has been elaborated to 
calculate simultaneously, with offset sheet, the 
appropriate coordinates of the same point on 
development. 

The approximate method is applicable to any 
surfaces with a zero Gaussian curvature. It is based on 
assumption that the Gaussian curvature on an 
elementary site of a curve is constant. For higher 
calculation accuracy it is necessary to allow for this 
circumstance by using the appropriate average of values 
of curvature at each elementary portion. 

Let equation of a surface be given as a system 

Hence, cos  is determined as 

.
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zzyyy

zzz

z




          (20) 

      Then for the determination of geodesic curvature the resultant expression is as 

  

.
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1212
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2
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1

2
12

2'
1
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'
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2/32'
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"
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z
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



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                              (21) 
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               (26) 

The first two equations define in an implicit form 
the boundary lines of a developable surface segment. If 
they are the equations of the frames given in the form 
of transformed versiera or any other curve, the 
coefficients of these equations are given as arrays of Ai 
and Bi (i =1, 2, 3, …10). (The transformed versiera has 
been developed by the author and was described in the 
book by A. Gotman, [1979]). 

The solution of this system (26) gives ordinates y of 
any surface point in a system of a vessel OXYZ. In the 
course of solving this system all data for the 
development construction can be obtained as well as the 
coordinates of the point ),( ptM  on development for 

the appropriate point ),,( zyxM on the surface.  

Figure 13 (Appendix B) shows construction of a 
part of development M1i M1(i+1) M2(i+1) M2i. According to 

the accepted assumption the parts of frames 1x  and 2x  

are substituted by arcs of circles. 
Let the first and second equations of system (26) be 

given by the equations of frames  
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 (27) 

In the course of the determination of ordinates 2y  

of the second frame the coordinates 1y  and 1z  of the 

point are determined on the first frame through which 
the appropriate straight generatrix passes. For 
construction of development the values of geodesic 

curvature 
1gK  and 

2gK  by the formula (21) in each 

of these points are simultaneously determined. 

In order to determinate geodesic curvature gK  it is 

necessary to know values of first and second derivatives 
at these points. As the equations of frames are given in 
an implicit form, the derivatives are determined by the 
formulas 
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   (28) 

At the same time the differences are determined 


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12

12
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                       (29) 

and the length L of a straight generatrix between the 

points 1M  and 2M is found by the formula 

          .222 zyxL                             (30) 

The angle  is determined as an angle between 
vectors of a tangent line and straight generatrix passing 
through the point 1M .  

The vector of a tangent line is equal to 

       K = '
1zy i + k,                       (31) 

and the vector of the straight generatrix has the form 
kji )()()( 121212 zzyyxxL             (32) 

The angle  is determined by the formula 

.
)()()(

)()(
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1
arccos(

2
12

2
12

2
12

12
'
112

'
1

1

1

zzyyxx

yyyzz

y

z

z








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     (33) 

The calculation of coordinates of points 1M  and 

2M  is performed from the basic plane up to the deck. 

Thus 1z  varies at equal intervals 1z  and 2z  is 

determined from the parallelism of tangent lines at the 
points 1M  and 2M which results in the intervals 

2z being different. For the development construction 

it is necessary to know length of arcs of frames between 
the neighbor points. The points are designated 

nii MMMMMM 1111131211 ....,,....,,,  stand for the 

points on the first frame; 

nii MMMMMM 2122232221 ....,,....,,,  are the points 

on the second frame. 
As the frames are in an implicit form, their length 

can not be obtained by integration, therefore lengths of 
arcs should be determined as length of an inscribed 
polygonal line. For this purpose, the distance between 
two neighboring points on each frame is divided in 
direction of the axis OZ into ten equal parts. Then 

length of an arc between points iM1  and 11 iM  is 

determined by the formula  

            ,
10

1

2
1

2
11 




n
ni zyS           (34) 

where 
              nynyny 111)( 1     

                     .
10

111
1

ii zz
z


   

At each point of the division of frames between M1i 

and M1i+1 for 111 znzz i  , where n =1, 2, 3, … 

10, the ordinates 1y  are determined by  the equation of 

a frame from which 1y  are calculated. 
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The lengths of arcs of the second frame are 
calculated  in  a similar way.  

         ,
10

1

2
2

2
22 




n
ni zyS                       (35) 

   nynyny 212)( 2  ; 

  .
10

212
2

ii zz
z


   

The angle i  is determined as the product of the 

length of an arc on a curvature with the formulas 

,

;

2

1

22

11

igii

igii

KS

KS








                 (36) 

where 1gK  and 2gK  –stand for the curvature at the 

points iM1  and iM 2 respectively (Appendix B, figure 

13), and iS1  and iS2 –designate the  length of arcs 

between the points 111  ii MM  and  122  ii MM .  
The development is constructed in a ОТР system. In 

this system, the frames can conveniently be arranged at 
the same distance from the middle as in a theoretical 
line drawing. The base line of the hull should coincide 
with a coordinate line ОР. Then the flat part of the 
bottom will naturally be combined with the plane of 
development. The first straight generatrix, for which the 
coordinates of points 1M  and 2M in the  system of 

development ОТР ),( 111 tpM  and ),( 222 tpM are 

determined, should belong to a flat part of the bottom. 
From it the counting of coordinates of points of frames 
begins. The position of the first straight generatrix on 
development corresponds to the initial conditions, 
which should be given in the process of solution of a 
differential equation. 

For translation of coordinates of points into the 
system ОТР it is necessary to precisely determine the 

angle of declination 1 of the first straight generatrix to 

the base line. The same angle this straight generatrix 
makes with the coordinate axis of development ОР. 

From figure 14 (Appendix B) it is clear that if 

21MM  is the first straight generatrix, the coordinates 

of points 1M  and 2M  on development are determined 

as follows. Let 1x  be the abscissa of the first boundary 

frame and х2 be the abscissa of the second boundary 
frame. Then in the frame 111 PTO , at which the first 

straight generatrix serves as an axis 11PO the 

coordinates of the point 1M are equal to: 

   ,0; 1
11

1
1  txp                        (37) 

and the coordinate of the point 2M  

            ,0; 1
211

1
2  tLxp                      (38) 

where 1L  is the length of the first straight generator. 

The coordinates of the following points of the 
first and second boundary frames are determined as a 

projection on the axes 11PO  and 11TO  by the formulas 

,
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;
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pp

         (39) 

where iK  and 1iK  are the angular coefficients of 

radiuses of a curvature iR  in relation to the first 

straight generatrix. They are determined by the 
formulas 
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                 (40) 

The translation of coordinates into the system ОТР 
(Appendix B, figure 14) is performed  by the formulas 

         
,cossin

;sincos
11

11

oioioi

oioioi

tptt

tppp








              (41) 

where о is the  angle between axis О1Р1 and ОР. 
On calculating the coordinates of points of frames 

on development from all angles i  only 1 , and from 

lengths of the straight generatrices ii MM 21  - only 1L  is 

used, therefore all following values iL  are applied to 

check of an exactness of a construction of development. 
As the control magnitude it is convenient to use a 
distance between the appropriate points iM1  and iM 2 , 

which is equal to 

    .)()( 21
2

1
1

21
2

1
1 iiiiii ttppLL          (42) 

The exactness of a construction of development 
depends on an amount of points which the frame is 
divided, and consequently, the more calculated points 
are taken, the greater accuracy of a construction is 
attained.. The numbers of calculated points are defined 
by a computer.  

Figure 15 (Appendix B) shows the frames with 

abscissas 1x  and 2x  which are basic for the given 

extremity. The coordinates of straight generatrices of 
the extremity located on the first frame at equal height 
intervals are computer-generated. All intermediate 
practical and theoretical frames are obtained by the 
proportional division of distances between ends of the 
straight generatrices. 

Using the above-mentioned algorithm one can 
obtain the coordinates of ends of straight generatrices 
on a development and to plot them on a drawing as a 
grid for a construction of the frames and waterlines 
(Appendix B, figure16). The coordinates of points of 
diametrical buttock, theoretical or practical frames, and 
waterlines, which are calculated on the computer, are 
also plotted on a drawing. By the method of 
proportional division, the points of a frame will hit an 
available grid of straight generatrices of surface made 
beforehand. Figure 16 shows  zn of a waterline, xj of a 
frame, and also diametrical buttock by way of example.   
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For the computer-aided determination of coordinates p 
and t of a point with the given values x, y, z, belonging 
to the surface of the hull, it is necessary to define the 
coordinates ends of a straight generatrix, which passes 
through this point on the hull, and consequently, and on 
development. On the hull, the ends of straight 
generatrices are the points ),,( 1111 zyxM  and 

),,( 2222 zyxM with the first point lying on the first 

basic frame, and second - on the second one.  
On defining the coordinates of any point ),( tpM on 

the development two methods can be used. The first 

method consists in the definition of coordinates 11tp  

and 22tp by the above-shown algorithm, i.e. in a 

sequential construction of points of basic frames on 
development from initial straight generatrix up to 
required one. The second method is easier. It is based 
on using an available grid of development consisting of 
frames and straight generatrices. On such a 
development near the numbers of points on ends of 
straight generatrices it is necessary to write down the 
coordinates, appropriate to them, zyx ,,  of the hull. 

Then, it is possible to find the position of a point on 
development by interpolating after the coordinate of 
ends of straight generatrix passing through this point 
has been determined for the given point of a. 

For example, on development (Appendix B, figure 
18) it  is necessary to find a point of the hull with 
coordinates M(x, y, z), through which straight generatrix 
passes with ends in points M1(x1 , y1, z1)  and M2(x2 , y2, 
z2).. This generatrix passes between 11 and 12 straight 
generatrices on development. The definition of a 
position of this straight generatrix is shown on the 
following example.  

Let the point М has coordinates )5.0,18.0,8.9(M , and 

coordinates of ends of the straight generatrix through it 
be )47.,075.,10(1M and )25.8,115.1,8(2M .The appropriate 

coordinates of the ends of eleventh straight generatrix 

)45.,066.,10(
'
1M  and )8.,108.1,8(

'
2M , and coordinate of 

ends of twelfth straight generatrix )5.,085.,10(
''

1M  and 

)844.,125.1,8(
''
2M . The coordinates of points 

''
2,

''
1,

'
2,

'
1 MMMM  on development are computer - 

generated and are equal respectively to )296.,076.10(
'
1M , 

)49.1,13.8(
'
2M , )348.,089.10(

''
1M , and )348.,089.10(

''
1M .  

 To define a position of a straight generatrix, 
passing through the given point on development, it is 
possible to employ the following formulas. 

Let )1,1(1 tpM  correspond to an end of the 

generatrix on the first frame 1x , and )2,2(2 tpM - to the 

end of the generatrix on a frame 2x . Then the 

coordinates of these points are connected to coordinates 
of the neighbor generatrix by the formulas 
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              (43) 

 
After the definition of coordinates 11tp , p2, t2 it is 

easy to find p and t of the required point ),,( zyxM  

using the formulas  
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For the example of figure 16 (Appendix B), р1 = 

10.082. For the point М coordinates on development are 
determined by the formulas (43) and equal р = 9.887, t 
= .441. The point M (p, t) is shown in figure 16. It is 
located on generatrix (shown as a dashed line), the ends 
of which are at the points ),( 111 tpM and ),( 222 tpM . 

As this example demonstrates, if it is required to find an 
intermediate point on ready development it is necessary 
to find the coordinates by the above-presented 
formulas. On a development drawing it is sufficient to 
show the coordinates of points in common OXYZ 
system instead of numbering them. The coordinates p 
and t are derived from a drawing of development with 
the help of scales on axes OP and OT. 

The development, which is shown in a figure 16 
(Appendix B) is constructed with the help of calculated 
coordinates. The table containing the coordinates of 
points on development simultaneously includes 
coordinates of the same points in a system OXYZ of the 
ship. In each row the coordinates x, y, z, p, t are 
specified. In the same row it is possible for convenience 
to specify the same coordinates in a scale of a line 
drawing. The table contains data on practical and 
theoretical frames. With such a table, it is easy to 
construct development with drawing of frames, 
waterlines, lines of a deck and diametrical line, and also 
straight generatrices of the surfaces of the hull. 

The obtained algorithm can be used for the 
development of any sheet construction which may or 
may not be connected to the hull of a vessel. 

Note: to obtain development of a surface it is 
necessary for the basic curves to be given by such 
expressions, so that the second derivative happens 
should be smooth. Any jump of the second derivative 
will be expressed by a rupture of curves in 
development. 
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CONCLUSION 
 

The paper describes the method of constructing a lines drawing of vessels from developable surfaces. This technique 
is simple and can be applied both computer-aided and manually. It can be successfully used both by large ship-
building firms, and amateurs. A method for designing shapes for different ships with the developable skin with no loss 
of hydrodynamic performance is also offered. Comparative towing tests of traditionally shaped ship models from 
developable surfaces of different vessel types have shown that any ship hull can be projected from developable 
surfaces up to  95 – 97 %. There is also a practical method for computer-aided constructing the development of the 
ship hull skin.  
   The detailed description of designing ship hull shapes from developable surfaces is given in the monograph by the 
author (Gotman, 1979)  
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 APPENDIX  A.   FIGURES TO CONSTRACTING A LINES DRAWING 
 

 
 

 
 

                                                   
Figure 1.   Polyparametrical  
                developable surface                                       Figure 2. Cuts of polyparametrical  
                                                                                          developable surfaces by parallel   
                                                                                          planes 

                          Figure 3.   The  construction of ship hull shapes 
                                           from developable surfaces. 
 
 

                              
Figure  4.  Formation of ship shapes from developable surfaces. a) – the hull shapes with a   
                  middle body;    b) - the hull shapes without a middle body. 
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Figure 5. The afterbody and forebody of ship with a bow bulb 
                                     hull shapes of the initial form, 
                        hull shapes from developable surfaces 
 

           
 
 
 
         Figure 6.  Hull shapes of a river vessel such as "«Rodina" and the comparative resistance curves of 
         these variants of hull shapes  а)  initial variant with usual shapes; b) – shapes with developable  
         skin; c) “simplified” hull shapes.    The upper curve is the resistance of variant c; the lower  
        curve is resistance of variant b; the middle curve is resistance of variant a 
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Figure 7 The hull shapes of  R69 

a) hull shapes with developable skin 
(variant 1) 
b) hull shapes with developable skin 
(variant 2) 
c) hull shapes with developable skin 
(variant 3) 
  

 

Figure 8. The comparison of the hull shapes of 
R69 with       the hull shapes of variant 2 from 
developable surfaces 

       
Figure 9. The comparison of 

resistance  curves  
 1. – of the usual shapes of R69    
  2. – of the variant 1; 

            3. – of the variant 2;  
            4. – of the variant 3. 
 
 

APPENDIX  B.  FIGURES TO CONSTRUCTION OF THE DEVELOPMENT OF SHIP HULL SKIN  
 

    
 
Figure 10.  Normal to a frame n and a  
tangent plane with normal to it N.                Figure 11.  Development of the direct circular cone. 
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Figure 12. Development of the direct circular cone       Figure 13.  Calculated magnitudes of the 

                                                                                        development element of a surface 

                   
 
                Figure 14.  Connection between coordinate systems of development 

    

         Figure 15. Position calculates straight generatrices on projection “half-breadth”.      

 
                Figure 16.  Position of the straight generatrices of the hull surface 


